
GNU TLS
Transport Layer Security Library for the GNU system

for version 1.1.14, 5 August 2004

Nikos Mavroyanopoulos (bug-gnutls@gnu.org)

mailto:bug-gnutls@gnu.org

This manual is last updated 5 August 2004 for version 1.1.14 of GNU TLS.
Copyright c© 2004 Simon Josefsson
Copyright c© 2001, 2002, 2003, 2004 Nikos Mavroyanopoulos

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled "GNU Free Documentation License".

i

Table of Contents

1 Preface. 1
1.1 Introduction . 1
1.2 Availability . 1

2 The Library . 2
2.1 General Idea . 2
2.2 Error handling . 4
2.3 Memory handling . 4
2.4 Callback functions . 4

3 Introduction to TLS . 5
3.1 TLS layers . 5
3.2 The transport layer . 6
3.3 The TLS record protocol . 6

3.3.1 Encryption algorithms used in the record layer 6
3.3.2 Compression algorithms used in the record layer 7
3.3.3 Weaknesses and countermeasures. 7

3.4 The TLS alert protocol . 8
3.5 The TLS handshake protocol . 8

3.5.1 TLS cipher suites . 8
3.5.2 Client authentication . 9
3.5.3 Resuming Sessions . 9
3.5.4 Resuming internals . 9

3.6 TLS Extensions . 10
3.6.1 Maximum fragment length negotiation 10
3.6.2 Server name indication . 10

4 Authentication methods 11
4.1 Certificate authentication . 11

4.1.1 Authentication using X.509 certificates 11
4.1.2 Authentication using OpenPGPkeys . 11
4.1.3 Using certificate authentication . 11

4.2 Anonymous authentication . 12
4.3 Authentication using SRP . 13
4.4 Authentication and credentials . 14
4.5 Parameters stored in credentials . 14

ii

5 More on certificate authentication 16
5.1 The X.509 trust model . 16

5.1.1 X.509 certificates . 16
5.1.2 Verifying X.509 certificate paths . 17
5.1.3 PKCS #10 certificate requests . 18
5.1.4 PKCS #12 structures . 18

5.2 The OpenPGP trust model . 18
5.2.1 OpenPGP keys . 19
5.2.2 Verifying an OpenPGP key . 19

6 How to use TLS in application protocols . . . 21
6.1 Introduction . 21
6.2 Separate ports . 21
6.3 Upward negotiation . 21

7 How to use GnuTLS in applications 23
7.1 Preparation . 23

7.1.1 Headers . 23
7.1.2 Version check . 23
7.1.3 Building the source . 23

7.2 Multi-threaded applications . 24
7.3 Client examples . 25

7.3.1 Simple client example with X.509 certificate support 25
7.3.2 Obtaining session information . 28
7.3.3 Verifying peer’s certificate . 30
7.3.4 Using a callback to select the certificate to use 34
7.3.5 Client with Resume capability example 39
7.3.6 Simple client example with SRP authentication 42

7.4 Server examples . 44
7.4.1 Echo Server with X.509 authentication 44
7.4.2 Echo Server with X.509 authentication II 48
7.4.3 Echo Server with OpenPGPauthentication 55
7.4.4 Echo Server with SRP authentication 59

7.5 Miscellaneous examples . 62
7.5.1 Checking for an alert . 63
7.5.2 X.509 certificate parsing example . 63
7.5.3 Certificate request generation . 65
7.5.4 PKCS #12 structure generation . 67

7.6 Compatibility with the OpenSSL library . 70

8 Included programs . 71
8.1 Invoking srptool . 71
8.2 Invoking gnutls-cli-debug . 71
8.3 Invoking certtool . 72

iii

9 Function reference . 76
9.1 Core functions . 76
9.2 X.509 certificate functions . 105
9.3 GnuTLS-extra functions . 138
9.4 OpenPGP functions . 138

10 Certificate to XML convertion functions . . 144
10.1 An X.509 certificate . 144
10.2 An OpenPGP key . 147

11 Error codes and descriptions 149

12 All the supported ciphersuites in GnuTLS
. 152

Appendix A Copying This Manual 153
A.1 GNU Free Documentation License . 153

A.1.1 ADDENDUM: How to use this License for your documents
. 159

Index . 160

Chapter 1: Preface 1

1 Preface

1.1 Introduction

This document tries to demonstrate and explain the GnuTLS library API. A brief intro-
duction to the protocols and the technology involved, is also included so that an applica-
tion programmer can better understand the GnuTLS purpose and actual offerings. Even if
GnuTLS is a typical library software, it operates over several security and cryptographic pro-
tocols, which require the programmer to make careful and correct usage of them, otherwise
he risks to offer just a false sense of security. Security and the network security terms are
very general terms even for computer software thus cannot be easily restricted to a single
cryptographic library. For that reason, do not consider a program secure just because it
uses GnuTLS; there are several ways to compromise a program or a communication line and
GnuTLS only helps with some of them.

This document tries to be self contained, although basic network programming and
PKI knowlegde is assumed in most of it. Peter Gutmann’s “Everything you never wanted
to know about PKI but were forced to find out”1 is a good introduction to Public Key
Infrastructure.

1.2 Availability

Updated versions of the GnuTLS software and this document will be available from
http://www.gnutls.org/ and http://www.gnu.org/software/gnutls/.

1 Available from http://www.cs.auckland.ac.nz/~pgut001/pubs/pkitutorial.pdf

http://www.gnutls.org/
http://www.gnu.org/software/gnutls/
http://www.cs.auckland.ac.nz/~pgut001/pubs/pkitutorial.pdf

Chapter 2: The Library 2

2 The Library

In brief GnuTLS can be described as a library which offers an API to access secure commu-
nication protocols. These protocols provide privacy over insecure lines, and were designed
to prevent eavesdropping, tampering, or message forgery.

Technically GnuTLS is a portable ANSI C based library which implements the TLS 1.0
(See Chapter 3 [Introduction to TLS], page 5, for a more detailed description of the proto-
cols) and SSL 3.0 protocols, accompanied with the required framework for authentication
and public key infrastructure. The library is available under the GNU Lesser GPL license1.
Important features of the GnuTLS library include:

• Support for TLS 1.0, TLS 1.1, and SSL 3.0 protocols.

• Support for both X.509 and OpenPGP certificates.

• Support for handling and verification of certificates.

• Support for SRP for TLS authentication.

• Support for TLS Extension mechanism.

• Support for TLS Compression Methods.

Additionally GnuTLS provides a limited emulation API for the widely used OpenSSL2

library, to ease integration with existing applications.

GnuTLS consists of three independent parts, namely the “TLS protocol part”, the “Cer-
tificate part”, and the “Crypto backend” part. The ‘TLS protocol part’ is the actual protocol
implementation, and is entirely implemented within the GnuTLS library. The ‘Certificate
part’ consists of the certificate parsing, and verification functions which is partially im-
plemented in the GnuTLS library. The Libtasn13, a library which offers ASN.1 parsing
capabilities, is used for the X.509 certificate parsing functions, and Opencdk4 is used for
the OpenPGP key support in GnuTLS. The “Crypto backend” is provided by the Libgcrypt5

library.

In order to ease integration in embedded systems, parts of the GnuTLS library can be
disabled at compile time. That way a small library, with the required features, can be
generated.

1 A copy of the license is included in the distribution
2 http://www.openssl.org/
3 ftp://ftp.gnupg.org/gcrypt/alpha/gnutls/libtasn1/
4 ftp://ftp.gnupg.org/gcrypt/alpha/gnutls/opencdk/
5 ftp://ftp.gnupg.org/gcrypt/alpha/libgcrypt/

http://www.openssl.org/
ftp://ftp.gnupg.org/gcrypt/alpha/gnutls/libtasn1/
ftp://ftp.gnupg.org/gcrypt/alpha/gnutls/opencdk/
ftp://ftp.gnupg.org/gcrypt/alpha/libgcrypt/

Chapter 2: The Library 3

2.1 General Idea

A brief description of how GnuTLS works internally is shown at the figure below. This section
may be easier to understand after having seen the examples (see [examples], page 23).

As shown in the figure, there is a read-only global state that is initialized once by the
global initialization function. This global structure, among others, contains the memory
allocation functions used, and some structures needed for the ASN.1 parser. This structure
is never modified by any GnuTLS function, except for the deinitialization function which frees
all memory allocated in the global structure and is called after the program has permanently
finished using GnuTLS.

The credentials structure is used by some authentication methods, such as certificate
authentication (see [certificate], page 16). A credentials structure may contain certificates,
private keys, temporary parameters for diffie hellman or RSA key exchange, and other stuff
that may be shared between several TLS sessions.

This structure should be initialized using the appropriate initialization functions. For
example an application which uses certificate authentication would probably initialize the
credentials, using the appropriate functions, and put its trusted certificates in this structure.
The next step is to associate the credentials structure with each TLS session.

A GnuTLS session contains all the required stuff for a session to handle one secure con-
nection. This session calls directly to the transport layer functions, in order to communicate
with the peer. Every session has a unique session ID shared with the peer.

Since TLS sessions can be resumed, servers would probably need a database backend
to hold the session’s parameters. Every GnuTLS session after a successful handshake calls
the appropriate backend function (See [resume], page 9, for information on initialization)
to store the newly negotiated session. The session database is examined by the server just
after having received the client hello6, and if the session ID sent by the client, matches a

6 The first message in a TLS handshake

Chapter 2: The Library 4

stored session, the stored session will be retrieved, and the new session will be a resumed
one, and will share the same session ID with the previous one.

2.2 Error handling

In GnuTLS most functions return an integer type as a result. In almost all cases a zero or a
positive number means success, and a negative number indicates failure, or a situation that
some action has to be taken. Thus negative error codes may be fatal or not.

Fatal errors terminate the connection immediately and further sends and receives will
be disallowed. An example of a fatal error code is GNUTLS_E_DECRYPTION_FAILED. Non-
fatal errors may warn about something, ie a warning alert was received, or indicate the
some action has to be taken. This is the case with the error code GNUTLS_E_REHANDSHAKE
returned by gnutls_record_recv. This error code indicates that the server requests a
re-handshake. The client may ignore this request, or may reply with an alert. You can test
if an error code is a fatal one by using the gnutls_error_is_fatal.

If any non fatal errors, that require an action, are to be returned by a function, these
error codes will be documented in the function’s reference. See [error codes], page 149, for
all the error codes.

2.3 Memory handling

GnuTLS internally handles heap allocated objects differently, depending on the sensitivity
of the data they contain. However for performance reasons, the default memory functions
do not overwrite sensitive data from memory, nor protect such objects from being written to
the swap. In order to change the default behavior the gnutls_global_set_mem_functions
function is available which can be used to set other memory handlers than the defaults.

The Libgcrypt library on which GnuTLS depends, has such secure memory allocation
functions available. These should be used in cases where even the system’s swap memory
is not considered secure. See the documentation of Libgcrypt for more information.

2.4 Callback functions

There are several cases where GnuTLS may need some out of band input from your program.
This is now implemented using some callback functions, which your program is expected to
register.

An example of this type of functions are the push and pull callbacks which are used to
specify the functions that will retrieve and send data to the transport layer.
• gnutls_transport_set_push_function

• gnutls_transport_set_pull_function

Other callback functions such as the one set by gnutls_srp_set_server_credentials_
function, may require more complicated input, including data to be allocated. These
callbacks should allocate and free memory using the functions shown below.
• gnutls_malloc

• gnutls_free

Chapter 3: Introduction to TLS 5

3 Introduction to TLS

TLS stands for “Transport Layer Security” and is the successor of SSL, the Secure Sockets
Layer protocol1 designed by Netscape. TLS 1.0 is an Internet protocol, defined by IETF2,
described in RFC 2246 and also in RESCOLA. The protocol provides confidentiality, and
authentication layers over any reliable transport layer. The description, below, refers to
TLS 1.0 but also applies to SSL 3.0 since the differences of these protocols are minor. Older
protocols such as SSL 2.0 are not discussed nor implemented in GnuTLS since they are not
considered secure today.

3.1 TLS layers

TLS 1.0 is a layered protocol, and consists of the Record Protocol, the Handshake Protocol
and the Alert Protocol. The Record Protocol is to serve all other protocols and is above
the transport layer. The Record protocol offers symmetric encryption, data authenticity,
and optionally compression.

The Alert protocol offers some signaling to the other protocols. It can help informing
the peer for the cause of failures and other error conditions. See [alert], page 8, for more
information. The alert protocol is above the record protocol.

The Handshake protocol is responsible for the security parameters’ negotiation, the
initial key exchange and authentication. See [handshake], page 8, for more information
about the handshake protocol. The protocol layering in TLS is shown in the figure below.

 Transport Layer

 TLS Record
Protocol

 Application TLS Handshake TLS Alert
 Protocol Protocol Protocol

1 Described in SSL3
2 IETF, or Internet Engineering Task Force, is a large open international community of network designers,

operators, vendors, and researchers concerned with the evolution of the Internet architecture and the
smooth operation of the Internet. It is open to any interested individual.

Chapter 3: Introduction to TLS 6

3.2 The transport layer

TLS is not limited to one transport layer, it can be used above any transport layer, as long
as it is a reliable one. A set of functions is provided and their purpose is to load to GnuTLS
the required callbacks to access the transport layer.
• gnutls_transport_set_push_function

• gnutls_transport_set_pull_function

• gnutls_transport_set_ptr

These functions accept a callback function as a parameter. The callback functions should
return the number of bytes written, or -1 on error and should set errno appropriately.

GnuTLS currently only interprets the EINTR and EAGAIN errno values and returns the
corresponding GnuTLS error codes GNUTLS_E_INTERRUPTED and GNUTLS_E_AGAIN. These
values are usually returned by interrupted system calls, or when non blocking IO is used.
All GnuTLS functions can be resumed (called again), if any of these error codes is returned.
The error codes above refer to the system call, not the GnuTLS function, since signals do
not interrupt GnuTLS’ functions.

By default, if the transport functions are not set, GnuTLS will use the Berkeley Sockets
functions. In this case GnuTLS will use some hacks in order for select to work, thus making
it easy to add TLS support to existing TCP/IP servers.

3.3 The TLS record protocol

The Record protocol is the secure communications provider. Its purpose is to encrypt,
authenticate and –optionally– compress packets. The following functions are available:
• gnutls_record_send To send a record packet (with application data).
• gnutls_record_recv: To receive a record packet (with application data).

As you may have already noticed, the functions which access the Record protocol, are
quite limited, given the importance of this protocol in TLS. This is because the Record
protocol’s parameters are all set by the Handshake protocol.

The Record protocol initially starts with NULL parameters, which means no encryption,
and no MAC is used. Encryption and authentication begin just after the handshake protocol
has finished.

3.3.1 Encryption algorithms used in the record layer

Confidentiality in the record layer is achieved by using symmetric block encryption algo-
rithms like 3DES, AES3, or stream algorithms like ARCFOUR_1284. Ciphers are encryption
algorithms that use a single, secret, key to encrypt and decrypt data. Block algorithms in
TLS also provide protection against statistical analysis of the data. Thus, if you’re using
the TLS 1.0 protocol, a random number of blocks will be appended to data, to prevent
eavesdroppers from guessing the actual data size.

Supported cipher algorithms:

3 AES, or Advanced Encryption Standard, is actually the RIJNDAEL algorithm. This is the algorithm
that replaced DES.

4 ARCFOUR_128 is a compatible algorithm with RSA’s RC4 algorithm, which is considered to be a trade
secret.

Chapter 3: Introduction to TLS 7

• 3DES_CBC 3DES_CBC is the DES block cipher algorithm used with triple encryption
(EDE). Has 64 bits block size and is used in CBC mode.

• ARCFOUR_128 ARCFOUR is a fast stream cipher.
• ARCFOUR_40 This is the ARCFOUR cipher that is fed with a 40 bit key, which is

considered weak.
• AES_CBC AES or RIJNDAEL is the block cipher algorithm that replaces the old DES

algorithm. Has 128 bits block size and is used in CBC mode. This is not officially
supported in TLS.

Supported MAC algorithms:
• MAC_MD5 MD5 is a cryptographic hash algorithm designed by Ron Rivest. Outputs 128

bits of data.
• MAC_SHA SHA is a cryptographic hash algorithm designed by NSA. Outputs 160 bits

of data.
• MAC_RMD160 RIPEMD is a cryptographic hash algorithm developed in the framework

of the EU project RIPE. Outputs 160 bits of data.

3.3.2 Compression algorithms used in the record layer

The TLS record layer also supports compression. The algorithms implemented in GnuTLS
can be found in figure compression. All the algorithms except for DEFLATE which is
referenced in TLSCOMP, should be considered as GnuTLS’ extensions5, and should be
advertised only when the peer is known to have a compliant client, to avoid interoperability
problems.

The included algorithms perform really good when text, or other compressible data are
to be transfered, but offer nothing on already compressed data, such as compressed images,
zipped archives etc. These compression algorithms, may be useful in high bandwidth TLS
tunnels, and in cases where network usage has to be minimized. As a drawback, compression
increases latency.

The record layer compression in GnuTLS is implemented based on the paper TLSCOMP.
Supported compression algorithms:
• DEFLATE Zlib compression, using the deflate algorithm.
• LZO LZO is a very fast compression algorithm. This algorithm is only available if the

GnuTLS-extra library has been initialized and the private extensions are enabled.

3.3.3 Weaknesses and countermeasures

Some weaknesses that may affect the security of the Record layer have been found in TLS
1.0 protocol. These weaknesses can be exploited by active attackers, and exploit the facts
that
1. TLS has separate alerts for “decryption failed” and “bad record mac”
2. The decryption failure reason can be detected by timing the response time.
3. The IV for CBC encrypted packets is the last block of the previous encrypted packet.

Those weaknesses were solved in TLS 1.1 which is implemented in GnuTLS. For a detailed
discussion see the archives of the TLS Working Group mailing list and the paper CBCATT.

5 You should use gnutls_handshake_set_private_extensions to enable private extensions.

Chapter 3: Introduction to TLS 8

3.4 The TLS alert protocol

The Alert protocol is there to allow signals to be sent between peers. These signals are
mostly used to inform the peer about the cause of a protocol failure. Some of these signals
are used internally by the protocol and the application protocol does not have to cope with
them (see GNUTLS_A_CLOSE_NOTIFY), and others refer to the application protocol solely
(see GNUTLS_A_USER_CANCELLED). An alert signal includes a level indication which may be
either fatal or warning. Fatal alerts always terminate the current connection, and prevent
future renegotiations using the current session ID.

The alert messages are protected by the record protocol, thus the information that is
included does not leak. You must take extreme care for the alert information not to leak
to a possible attacker, via public log files etc.
• gnutls_alert_send: To send an alert signal.
• gnutls_error_to_alert: To map a gnutls error number to an alert signal.
• gnutls_alert_get: Returns the last received alert.
• gnutls_alert_get_name: Returns the name, in a character array, of the given alert.

3.5 The TLS handshake protocol

The Handshake protocol is responsible for the ciphersuite negotiation, the initial key ex-
change, and the authentication of the two peers. This is fully controlled by the application
layer, thus your program has to set up the required parameters. Available functions to
control the handshake protocol include:
• gnutls_cipher_set_priority: To set the priority of bulk cipher algorithms.
• gnutls_mac_set_priority: To set the priority of MAC algorithms.
• gnutls_kx_set_priority: To set the priority of key exchange algorithms.
• gnutls_compression_set_priority: To set the priority of compression methods.
• gnutls_certificate_type_set_priority: To set the priority of certificate types

(e.g., OpenPGP, X.509).
• gnutls_protocol_set_priority: To set the priority of protocol versions (e.g., SSL

3.0, TLS 1.0).
• gnutls_set_default_priority: To set some defaults in the current session. That

way you don’t have to call each priority function, independently, but you have to live
with the defaults.

• gnutls_credentials_set: To set the appropriate credentials structures.
• gnutls_certificate_server_set_request: To set whether client certificate is re-

quired or not.
• gnutls_handshake: To initiate the handshake.

3.5.1 TLS cipher suites

The Handshake Protocol of TLS 1.0 negotiates cipher suites of the form TLS_DHE_RSA_
WITH_3DES_CBC_SHA. The usual cipher suites contain these parameters:
• The key exchange algorithm. DHE_RSA in the example.
• The Symmetric encryption algorithm and mode 3DES_CBC in this example.

Chapter 3: Introduction to TLS 9

• The MAC6 algorithm used for authentication. MAC_SHA is used in the above example.

The cipher suite negotiated in the handshake protocol will affect the Record Protocol,
by enabling encryption and data authentication. Note that you should not over rely on TLS
to negotiate the strongest available cipher suite. Do not enable ciphers and algorithms that
you consider weak.

The priority functions, dicussed above, allow the application layer to enable and set
priorities on the individual ciphers. It may imply that all combinations of ciphersuites are
allowed, but this is not true. For several reasons, not discussed here, some combinations
were not defined in the TLS protocol. The supported ciphersuites are shown in [ciphersuites],
page 152.

3.5.2 Client authentication

In the case of ciphersuites that use certificate authentication, the authentication of the client
is optional in TLS. A server may request a certificate from the client – using the gnutls_
certificate_server_set_request function. If a certificate is to be requested from the
client during the handshake, the server will send a certificate request message that contains
a list of acceptable certificate signers. The client may then send a certificate, signed by
one of the server’s acceptable signers. In GnuTLS the server’s acceptable signers list is
constructed using the trusted CA certificates in the credentials structure.

3.5.3 Resuming Sessions

The gnutls_handshake function, is expensive since a lot of calculations are performed. In
order to support many fast connections to the same server a client may use session resuming.
Session resuming is a feature of the TLS protocol which allows a client to connect to a
server, after a successful handshake, without the expensive calculations. This is achieved
by using the previously established keys. GnuTLS supports this feature, and the example
(see [ex:resume-client], page 39) illustrates a typical use of it.

Keep in mind that sessions are expired after some time, for security reasons, thus it
may be normal for a server not to resume a session even if you requested that. Also note
that you must enable, using the priority functions, at least the algorithms used in the last
session.

3.5.4 Resuming internals

The resuming capability, mostly in the server side, is one of the problems of a thread-safe
TLS implementations. The problem is that all threads must share information in order
to be able to resume sessions. The gnutls approach is, in case of a client, to leave all the
burden of resuming to the client. Ie. copy and keep the necessary parameters. See the
functions:
• gnutls_session_get_data

• gnutls_session_get_id

• gnutls_session_set_data

The server side is different. A server has to specify some callback functions which store,
retrieve and delete session data. These can be registered with:

6 MAC stands for Message Authentication Code. It can be described as a keyed hash algorithm. See
RFC2104.

Chapter 3: Introduction to TLS 10

• gnutls_db_set_remove_function

• gnutls_db_set_store_function

• gnutls_db_set_retrieve_function

• gnutls_db_set_ptr

It might also be useful to be able to check for expired sessions in order to remove them,
and save space. The function gnutls_db_check_entry is provided for that reason.

3.6 TLS Extensions

A number of extensions to the TLS protocol have been proposed mainly in RFC 3546
(http://www.ietf.org/rfc/rfc3546.txt). The extensions supported in GnuTLS are
• Maximum fragment length negotiation
• Server name indication

discussed in the subsections that follow.

3.6.1 Maximum fragment length negotiation

This extension allows a TLS 1.0 implementation to negotiate a smaller value for record
packet maximum length. This extension may be useful to clients with constrained ca-
pabilities. See the gnutls_record_set_max_size and the gnutls_record_get_max_size
functions.

3.6.2 Server name indication

A common problem in HTTPS servers is the fact that the TLS protocol is not aware of the
hostname that a client connects to, when the handshake procedure begins. For that reason
the TLS server has no way to know which certificate to send.

This extension solves that problem within the TLS protocol, and allows a client to send
the HTTP hostname before the handshake begins within the first handshake packet. The
functions gnutls_server_name_set and gnutls_server_name_get can be used to enable
this extension, or to retrieve the name sent by a client.

http://www.ietf.org/rfc/rfc3546.txt

Chapter 4: Authentication methods 11

4 Authentication methods

The TLS protocol provides confidentiality and encryption, but also offers authentication,
which is a prerequisite for a secure connection. The available authentication methods in
GnuTLS are:

• Certificate authentication

• Anonymous authentication

• SRP authentication

4.1 Certificate authentication

4.1.1 Authentication using X.509 certificates

X.509 certificates contain the public parameters, of a public key algorithm, and an author-
ity’s signature, which proves the authenticity of the parameters. See [x509:trust], page 16,
for more information on X.509 protocols.

4.1.2 Authentication using OpenPGPkeys

OpenPGP keys also contain public parameters of a public key algorithm, and signatures
from several other parties. Depending on whether a signer is trusted the key is consid-
ered trusted or not. GnuTLS’s OpenPGP authentication implementation is based on the
TLSPGP proposal.

See [The OpenPGP trust model], page 18, for more information about the OpenPGP
trust model. For a more detailed introduction to OpenPGP and GnuPG see Mike Ashley’s
The GNU Privacy Handbook1.

4.1.3 Using certificate authentication

In GnuTLS both the OpenPGP and X.509 certificates are part of the certificate authentica-
tion and thus are handled using a common API.

When using certificates the server is required to have at least one certificate and pri-
vate key pair. A client may or may not have such a pair. The certificate and key pair
should be loaded, before any TLS session is initialized, in a certificate credentials struc-
ture. This should be done by using gnutls_certificate_set_x509_key_file or gnutls_
certificate_set_openpgp_key_file depending on the certificate type. In the X.509 case,
the functions will also accept and use a certificate list that leads to a trusted authority. The
certificate list must be ordered in such way that every certificate certifies the one before it.
The trusted authority’s certificate need not to be included, since the peer should possess it
already.

As an alternative, a callback may be used so the server or the client specify the certificate
and the key at the handshake time. That callback can be set using the functions:

• gnutls_certificate_server_set_retrieve_function

• gnutls_certificate_client_set_retrieve_function

1 http://www.gnupg.org/gph/en/manual.html

http://www.gnupg.org/gph/en/manual.html

Chapter 4: Authentication methods 12

Certificate verification is possible by loading the trusted authorities into the credentials
structure by using gnutls_certificate_set_x509_trust_file or gnutls_certificate_
set_openpgp_keyring_file for openpgp keys. Note however that the peer’s certificate
is not automatically verified, you should call gnutls_certificate_verify_peers, after
a successful handshake, to verify the signatures of the certificate. An alternative way,
which reports a more detailed verification output, is to use gnutls_certificate_get_
peers to obtain the raw certificate of the peer and verify it using the functions discussed
in [x509:trust], page 16.

In a handshake, the negotiated cipher suite depends on the certificate’s parameters, so
not all key exchange methods will be available with some certificates. GnuTLS will disable
ciphersuites that are not compatible with the key, or the enabled authentication methods.
For example keys marked as sign-only, will not be able to access the plain RSA ciphersuites,
but only the DHE_RSA ones. It is recommended not to use RSA keys for both signing and
encryption. If possible use the same key for the DHE_RSA and RSA_EXPORT ciphersuites,
which use signing, and a different key for the plain RSA ciphersuites, which use encryption.
All the key exchange methods shown below are available in certificate authentication.

Note that the DHE key exchange methods are generally slower2 than plain RSA and
require Diffie Hellman parameters to be generated and associated with a credentials struc-
ture. The RSA-EXPORT method also requires 512 bit RSA parameters, that should also be
generated and associated with the credentials structure. See the functions:
• gnutls_dh_params_generate2

• gnutls_certificate_set_dh_params

• gnutls_rsa_params_generate2

• gnutls_certificate_set_rsa_export_params

Key exchange algorithms for OpenPGP and X.509 certificates:
• RSA: The RSA algorithm is used to encrypt a key and send it to the peer. The certificate

must allow the key to be used for encryption.
• RSA_EXPORT: The RSA algorithm is used to encrypt a key and send it to the peer.

In the EXPORT algorithm, the server signs temporary RSA parameters of 512 bits –
which are considered weak – and sends them to the client.

• DHE_RSA: The RSA algorithm is used to sign Ephemeral Diffie Hellman parameters
which are sent to the peer. The key in the certificate must allow the key to be used
for signing. Note that key exchange algorithms which use Ephemeral Diffie Hellman
parameters, offer perfect forward secrecy. That means that even if the private key used
for signing is compromised, it cannot be used to reveal past session data.

• DHE_DSS: The DSS algorithm is used to sign Ephemeral Diffie Hellman parameters
which are sent to the peer. The certificate must contain DSA parameters to use this
key exchange algorithm. DSS stands for Digital Signature Standard.

4.2 Anonymous authentication

The anonymous key exchange perform encryption but there is no indication of the identity
of the peer. This kind of authentication is vulnerable to a man in the middle attack, but

2 It really depends on the group used. Primes with lesser bits are always faster, but also easier to break.
Values less than 768 should not be used today

Chapter 4: Authentication methods 13

this protocol can be used even if there is no prior communication and trusted parties with
the peer, or when full anonymity is required. Unless really required, do not use anonymous
authentication. Available key exchange methods are shown below.

Note that the key exchange methods for anonymous authentication require Diffie Hell-
man parameters to be generated and associated with an anonymous credentials structure.

Supported anonymous key exchange algorithms:

• ANON_DH: This algorithm exchanges Diffie Hellman parameters.

4.3 Authentication using SRP

Authentication using the SRP3. The SRP key exchange is an extension to the TLS 1.0
protocol protocol is actually password authentication. The two peers can be identified
using a single password, or there can be combinations where the client is authenticated
using SRP and the server using a certificate.

The advantage of SRP authentication, over other proposed secure password authentica-
tion schemas, is that SRP does not require the server to hold the user’s password. This kind
of protection is similar to the one used traditionally in the UNIX ‘/etc/passwd’ file, where
the contents of this file did not cause harm to the system security if they were revealed.
The SRP needs instead of the plain password something called a verifier, which is calcu-
lated using the user’s password, and if stolen cannot be used to impersonate the user. See
TOMSRP for a detailed description of the SRP protocol and the Stanford SRP libraries,
which includes a PAM module that synchronizes the system’s users passwords with the SRP
password files. That way SRP authentication could be used for all the system’s users.

The implementation in GnuTLS is based on paper TLSSRP. The supported SRP key
exchange methods are:

• SRP: Authentication using the SRP protocol.

• SRP_DSS: Client authentication using the SRP protocol. Server is authenticated using
a certificate with DSA parameters.

• SRP_RSA: Client authentication using the SRP protocol. Server is authenticated using
a certificate with RSA parameters.

If clients supporting SRP know the username and password before the connection, should
initialize the client credentials and call the function gnutls_srp_set_client_credentials.
Alternatively they could specify a callback function by using the function gnutls_srp_set_
client_credentials_function. This has the advantage that allows probing the server for
SRP support. In that case the callback function will be called twice per handshake. The
first time is before the ciphersuite is negotiated, and if the callback returns a negative error
code, the callback will be called again if SRP has been negotiated. This uses a special
TLS-SRP handshake idiom in order to avoid, in interactive applications, to ask the user for
SRP password and username if the server does not negotiate an SRP ciphersuite.

In server side the default behaviour of GnuTLS is to read the usernames and SRP ver-
ifiers from password files. These password files are the ones used by the Stanford srp
libraries and can be specified using the gnutls_srp_set_server_credentials_file. If a

3 SRP stands for Secure Remote Password, and is described in RFC2945

Chapter 4: Authentication methods 14

different password file format is to be used, then the function gnutls_srp_set_server_
credentials_function, should be called, in order to set an appropriate callback.

Some helper functions such as:
• gnutls_srp_verifier

• gnutls_srp_base64_encode

• gnutls_srp_base64_decode

Are included in GnuTLS, and may be used to generate, and maintain SRP verifiers, and
password files. A program to manipulate the required parameters for SRP authentication
is also included. See [srptool], page 71, for more information.

4.4 Authentication and credentials

In GnuTLS every key exchange method is associated with a credentials type. So in order to
enable to enable a specific method, the corresponding credentials type should be initialized
and set using gnutls_credentials_set. A mapping is shown below.

Key exchange algorithms and the corresponding credential types:

Key exchange Client credentials Server credentials

KX_RSA
KX_DHE_RSA
KX_DHE_DSS
KX_RSA_EXPORT CRD_CERTIFICATE CRD_CERTIFICATE

KX_SRP_RSA CRD_SRP CRD_SRP
KX_SRP_DSS CRD_CERTIFICATE

KX_SRP CRD_SRP CRD_SRP

KX_ANON_DH CRD_ANON CRD_ANON

4.5 Parameters stored in credentials

Several parameters such as the ones used for Diffie-Hellman authentication are stored within
the credentials structures, so all sessions can access them. Those parameters are stored in
structures such as gnutls_dh_params and gnutls_rsa_params, and functions like gnutls_
certificate_set_dh_params and gnutls_certificate_set_rsa_export_params can be
used to associate those parameters with the given credentials structure.

Since those parameters need to be renewed from time to time and a global structure
such as the credentials, may not be easy to modify since it is accessible by all sessions,
an alternative interface is available using a callback function. This can be set using the
gnutls_certificate_set_params_function. An example is shown below.

#include <gnutls.h>

gnutls_rsa_params rsa_params;

Chapter 4: Authentication methods 15

gnutls_dh_params dh_params;

/* This function will be called once a session requests DH
* or RSA parameters. The parameters returned (if any) will
* be used for the first handshake only.
*/
static int get_params(gnutls_session session,

gnutls_params_type_t type,
gnutls_params_st *st)

{
if (type == GNUTLS_PARAMS_RSA_EXPORT)

st->params.rsa_export = rsa_params;
else if (type == GNUTLS_PARAMS_DH)

st->params.dh = dh_params;
else return -1;

st->type = type;
/* do not deinitialize those parameters.
*/
st->deinit = 0;

return 0;
}

int main()
{

gnutls_certificate_credentials_t cert_cred;

initialize_params();

/* ...
*/

gnutls_certificate_set_params_function(cert_cred, get_params);
}

Chapter 5: More on certificate authentication 16

5 More on certificate authentication

5.1 The X.509 trust model

The X.509 protocols rely on a hierarchical trust model. In this trust model Certification
Authorities (CAs) are used to certify entities. Usually more than one certification authorities
exist, and certification authorities may certify other authorities to issue certificates as well,
following a hierarchical model.

Alice Bob

Root CA

CA I CA II

Web Server

Two typical X.509 Certification
paths

One needs to trust one or more CAs for his secure communications. In that case only the
certificates issued by the trusted authorities are acceptable. See the figure above for a typical
example. The API for handling X.509 certificates is described at section [sec:x509api],
page 105. Some examples are listed below.

5.1.1 X.509 certificates

An X.509 certificate usually contains information about the certificate holder, the signer,
a unique serial number, expiration dates and some other fields RFC3280 as shown in the
table below.
• version: The field that indicates the version of the certificate.
• serialNumber: This field holds a unique serial number per certificate.
• issuer: Holds the issuer’s distinguished name.
• validity: The activation and expiration dates.
• subject: The subject’s distinguished name of the certificate.

Chapter 5: More on certificate authentication 17

• extensions: The extensions are fields only present in version 3 certificates.

The certificate’s subject or issuer name is not just a single string. It is a Distinguished
name and in the ASN.1 notation is a sequence of several object IDs with their corresponding
values. Some of available OIDs to be used in an X.509 distinguished name are defined in
‘gnutls/x509.h’.

The Version field in a certificate has values either 1 or 3 for version 3 certificates. Version
1 certificates do not support the extensions field so it is not possible to distinguish a CA
from a person, thus their usage should be avoided.

The validity dates are there to indicate the date that the specific certificate was activated
and the date the certificate’s key would be considered invalid.

Certificate extensions are there to include information about the certificate’s subject
that did not fit in the typical certificate fields. Those may be e-mail addresses, flags that
indicate whether the belongs to a CA etc. All the supported X.509 version 3 extensions are
shown in the table below.
• subject key id (2.5.29.14): An identifier of the key of the subject.
• authority key id (2.5.29.35): An identifier of the authority’s key used to sign the

certificate.
• subject alternative name (2.5.29.17): Alternative names to subject’s distinguished

name.
• key usage (2.5.29.15): Constraints the key’s usage of the certificate.
• extended key usage (2.5.29.37): Constraints the purpose of the certificate.
• basic constraints (2.5.29.19): Indicates whether this is a CA certificate or not.
• CRL distribution points (2.5.29.31): This extension is set by the CA, in order to

inform about the issued CRLs.

In GnuTLS the X.509 certificate structures are handled using the gnutls_x509_crt_t
type and the corresponding private keys with the gnutls_x509_privkey_t type. All the
available functions for X.509 certificate handling have their prototypes in ‘gnutls/x509.h’.
An example program to demonstrate the X.509 parsing capabilities can be found at section
[ex:x509-info], page 63.

5.1.2 Verifying X.509 certificate paths

Verifying certificate paths is important in X.509 authentication. For this purpose the func-
tion gnutls_x509_crt_verify is provided. The output of this function is the bitwise OR
of the elements of the gnutls_certificate_status enumeration. A detailed description of
these elements can be found in figure below. The function gnutls_certificate_verify_
peers is equivalent to the previous one, and will verify the peer’s certificate in a TLS
session.
• CERT_INVALID: The certificate is not signed by one of the known authorities, or the

signature is invalid.
• CERT_REVOKED: The certificate has been revoked.
• CERT_SIGNER_NOT_FOUND: The certificate’s issuer is not known.

Although the verification of a certificate path indicates that the certificate is signed by
trusted authority, does not reveal anything about the peer’s identity. It is required to verify

Chapter 5: More on certificate authentication 18

if the certificate’s owner is the one you expect. See RFC2818 and section [ex:verify], page 30
for an example.

5.1.3 PKCS #10 certificate requests

A certificate request is a structure, which contain information about an applicant of a
certificate service. It usually contains a private key, a distinguished name and secondary
data such as a challenge password. GnuTLS supports the requests defined in PKCS #10
RFC2986. Other certificate request’s format such as PKIX’s RFC2511 are not currently
supported.

In GnuTLS the PKCS #10 structures are handled using the gnutls_x509_crq_t type.
An example of a certificate request generation can be found at section [ex:crq], page 65.

5.1.4 PKCS #12 structures

A PKCS #12 structure PKCS12 usually contains a user’s private keys and certificates. It
is commonly used in browsers to export and import the user’s identities.

In GnuTLS the PKCS #12 structures are handled using the gnutls_pkcs12_t type. This
is an abstract type that may hold several gnutls_pkcs12_bag_t types. The Bag types are
the holders of the actual data, which may be certificates, private keys or encrypted data.
An Bag of type encrypted should be decrypted in order for its data to be accessed.

An example of a PKCS #12 structure generation can be found at section [ex:pkcs12],
page 67.

5.2 The OpenPGP trust model

The OpenPGP key authentication relies on a distributed trust model, called the “web of
trust”. The “web of trust” uses a decentralized system of trusted introducers, which are
the same as a CA. OpenPGP allows anyone to sign anyone’s else public key. When Alice

Chapter 5: More on certificate authentication 19

signs Bob’s key, she is introducing Bob’s key to anyone who trusts Alice. If someone trusts
Alice to introduce keys, then Alice is a trusted introducer in the mind of that observer.

Alice

Bob

Dave

An example of the
 web of trust model

{Trust}

Charlie

Kevin

{Trust}

For example: If David trusts Alice to be an introducer, and Alice signed Bob’s key, Dave
also trusts Bob’s key to be the real one.

There are some key points that are important in that model. In the example Alice has
to sign Bob’s key, only if she is sure that the key belongs to Bob. Otherwise she may also
make Dave falsely believe that this is Bob’s key. Dave has also the responsibility to know
who to trust. This model is similar to real life relations.

Just see how Charlie behaves in the previous example. Although he has signed Bob’s
key - because he knows, somehow, that it belongs to Bob - he does not trust Bob to be an
introducer. Charlie decided to trust only Kevin, for some reason. A reason could be that
Bob is lazy enough, and signs other people’s keys without being sure that they belong to
the actual owner.

5.2.1 OpenPGP keys

In GnuTLS the OpenPGP key structures RFC2440 are handled using the gnutls_openpgp_
key_t type and the corresponding private keys with the gnutls_openpgp_privkey_t type.
All the prototypes for the key handling functions can be found at ‘gnutls/openpgp.h’.

5.2.2 Verifying an OpenPGP key

The verification functions of OpenPGP keys, included in GnuTLS, are simple ones,
and do not use the features of the “web of trust”. For that reason, if the verification
needs are complex, the assistance of external tools like GnuPG and GPGME
(http://www.gnupg.org/related_software/gpgme/) is recommended.

http://www.gnupg.org/related{�am =	tfam def rm{tt}	entt �ackslashcurfont }_software/gpgme/

Chapter 5: More on certificate authentication 20

There are two verification functions in GnuTLS, The gnutls_openpgp_key_verify_ring
and the gnutls_openpgp_key_verify_trustdb. The first one checks an OpenPGP key
against a given set of public keys (keyring) and returns the key status. The key verification
status is the same as in X.509 certificates, although the meaning and interpretation are
different. For example an OpenPGP key may be valid, if the self signature is ok, even if no
signers were found. The meaning of verification status is shown in the figure below. The
latter function checks a GnuPG trust database for the given key. This function does not
check the key signatures, only checks for disabled and revoked keys.
• CERT_INVALID: A signature on the key is invalid. That means that the key was modified

by somebody, or corrupted during transport.
• CERT_REVOKED: The key has been revoked by its owner.
• CERT_SIGNER_NOT_FOUND: The key was not signed by a known signer.

Chapter 6: How to use TLS in application protocols 21

6 How to use TLS in application protocols

6.1 Introduction

This chapter is intended to provide some hints on how to use the TLS over simple custom
made application protocols. The discussion below mainly refers to the TCP/IP transport
layer but may be extended to other ones too.

6.2 Separate ports

Traditionally SSL was used in application protocols by assigning a new port number for the
secure services. That way two separate ports were assigned, one for the non secure sessions,
and one for the secured ones. This has the benefit that if a user requests a secure session
then the client will try to connect to the secure port and fail otherwise. The only possible
attack with this method is a denial of service one. The most famous example of this method
is the famous “HTTP over TLS” or HTTPS protocol RFC2818.

Despite its wide use, this method is not as good as it seems. This approach starts the
TLS Handshake procedure just after the client connects on the –so called– secure port.
That way the TLS protocol does not know anything about the client, and popular methods
like the host advertising in HTTP do not work1. There is no way for the client to say “I
connected to YYY server” before the Handshake starts, so the server cannot possibly know
which certificate to use.

Other than that it requires two separate ports to run a single service, which is unnecessary
complication. Due to the fact that there is a limitation on the available privileged ports,
this approach was soon obsoleted.

6.3 Upward negotiation

Other application protocols2 use a different approach to enable the secure layer. They use
something called the “TLS upgrade” method. This method is quite tricky but it is more
flexible. The idea is to extend the application protocol to have a “STARTTLS” request,
whose purpose it to start the TLS protocols just after the client requests it. This is a really
neat idea and does not require an extra port.

This method is used by almost all modern protocols and there is even the RFC2817
paper which proposes extensions to HTTP to support it.

The tricky part, in this method, is that the “STARTTLS” request is sent in the clear,
thus is vulnerable to modifications. A typical attack is to modify the messages in a way that
the client is fooled and thinks that the server does not have the “STARTTLS” capability.
See a typical conversation of a hypothetical protocol:

(client connects to the server)
CLIENT: HELLO I’M MR. XXX
SERVER: NICE TO MEET YOU XXX
CLIENT: PLEASE START TLS

1 See also the Server Name Indication extension on [serverind], page 10.
2 See LDAP, IMAP etc.

Chapter 6: How to use TLS in application protocols 22

SERVER: OK
*** TLS STARTS
CLIENT: HERE ARE SOME CONFIDENTIAL DATA

And see an example of a conversation where someone is acting in between:
(client connects to the server)
CLIENT: HELLO I’M MR. XXX
SERVER: NICE TO MEET YOU XXX
CLIENT: PLEASE START TLS
(here someone inserts this message)
SERVER: SORRY I DON’T HAVE THIS CAPABILITY
CLIENT: HERE ARE SOME CONFIDENTIAL DATA

As you can see above the client was fooled, and was dummy enough to send the confi-
dential data in the clear.

How to avoid the above attack? As you may have already thought this one is easy to
avoid. The client has to ask the user before it connects whether the user requests TLS or
not. If the user answered that he certainly wants the secure layer the last conversation
should be:

(client connects to the server)
CLIENT: HELLO I’M MR. XXX
SERVER: NICE TO MEET YOU XXX
CLIENT: PLEASE START TLS
(here someone inserts this message)
SERVER: SORRY I DON’T HAVE THIS CAPABILITY
CLIENT: BYE
(the client notifies the user that the secure connection was not possible)

This method, if implemented properly, is far better than the traditional method, and
the security properties remain the same, since only denial of service is possible. The benefit
is that the server may request additional data before the TLS Handshake protocol starts,
in order to send the correct certificate, use the correct password file3, or anything else!

3 in SRP authentication

Chapter 7: How to use GnuTLS in applications 23

7 How to use GnuTLS in applications

7.1 Preparation

To use GnuTLS, you have to perform some changes to your sources and your build system.
The necessary changes are explained in the following subsections.

7.1.1 Headers

All the data types and functions of the GnuTLS library are defined in the header file
‘gnutls/gnutls.h’. This must be included in all programs that make use of the GnuTLS
library.

The extra functionality of the GnuTLS-extra library is available by including the header
file ‘gnutls/extra.h’ in your programs.

7.1.2 Version check

It is often desirable to check that the version of ‘gnutls’ used is indeed one which fits all
requirements. Even with binary compatibility new features may have been introduced but
due to problem with the dynamic linker an old version is actually used. So you may want
to check that the version is okay right after program startup. See the function gnutls_
check_version.

7.1.3 Building the source

If you want to compile a source file including the ‘gnutls/gnutls.h’ header file, you must
make sure that the compiler can find it in the directory hierarchy. This is accomplished by
adding the path to the directory in which the header file is located to the compilers include
file search path (via the -I option).

However, the path to the include file is determined at the time the source is configured.
To solve this problem, GnuTLS ships with two small helper programs libgnutls-config
and libgnutls-extra-config that knows about the path to the include file and other
configuration options. The options that need to be added to the compiler invocation at
compile time are output by the --cflags option to libgnutls-config. The following
example shows how it can be used at the command line:

gcc -c foo.c ‘libgnutls-config --cflags‘

Adding the output of libgnutls-config --cflags to the compilers command line will
ensure that the compiler can find the GnuTLS header file.

A similar problem occurs when linking the program with the library. Again, the compiler
has to find the library files. For this to work, the path to the library files has to be added
to the library search path (via the -L option). For this, the option --libs to libgnutls-
config can be used. For convenience, this option also outputs all other options that are
required to link the program with the GnuTLS libararies. The example shows how to link
‘foo.o’ with the GnuTLS libraries to a program foo.

gcc -o foo foo.o ‘libgnutls-config --libs‘

Of course you can also combine both examples to a single command by specifying both
options to ‘libgnutls-config’:

gcc -o foo foo.c ‘libgnutls-config --cflags --libs‘

Chapter 7: How to use GnuTLS in applications 24

7.2 Multi-threaded applications

Although the GnuTLS library is thread safe by design, some parts of the crypto backend,
such as the random generator, are not. Since libgcrypt 1.1.92 there was an automatic
detection of the thread library used by the application, so most applications wouldn’t need
to do any changes to ensure thread-safety. Due to the unportability of the automatic
thread detection, this was removed from later releases of libgcrypt, so applications have now
to register callback functions to ensure proper locking in sensitive parts of libgcrypt.

There are helper macros to help you properly initialize the libraries. Examples are shown
below.
• POSIX threads

#include <gnutls.h>
#include <gcrypt.h>
#include <errno.h>
#include <pthread.h>
GCRY_THREAD_OPTION_PTHREAD_IMPL;

int main()
{

/* The order matters.
*/

gcry_control (GCRYCTL_SET_THREAD_CBS, &gcry_threads_pthread);
gnutls_global_init();

}

• GNU PTH threads
#include <gnutls.h>
#include <gcrypt.h>
#include <errno.h>
#include <pth.h>
GCRY_THREAD_OPTION_PTH_IMPL;

int main()
{

gcry_control (GCRYCTL_SET_THREAD_CBS, &gcry_threads_pth);
gnutls_global_init();

}

• Other thread packages
/* The gcry_thread_cbs structure must have been
* initialized.
*/
static struct gcry_thread_cbs gcry_threads_other = { ... };

int main()
{

gcry_control (GCRYCTL_SET_THREAD_CBS, &gcry_threads_other);
}

Chapter 7: How to use GnuTLS in applications 25

7.3 Client examples

This section contains examples of TLS and SSL clients, using GnuTLS. Note that these
examples contain little or no error checking.

7.3.1 Simple client example with X.509 certificate support

Let’s assume now that we want to create a TCP client which communicates with servers
that use X.509 or OpenPGP certificate authentication. The following client is a very simple
TLS client, it does not support session resuming, not even certificate verification. The TCP
functions defined in this example are used in most of the other examples below, without
redefining them.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <gnutls/gnutls.h>

/* A very basic TLS client.
*/

#define MAX_BUF 1024
#define CAFILE "ca.pem"
#define SA struct sockaddr
#define MSG "GET / HTTP/1.0\r\n\r\n"

/* Connects to the peer and returns a socket
* descriptor.
*/
int tcp_connect(void)
{

const char *PORT = "443";
const char *SERVER = "127.0.0.1";
int err, sd;
struct sockaddr_in sa;

/* connects to server
*/
sd = socket(AF_INET, SOCK_STREAM, 0);

memset(&sa, ’\0’, sizeof(sa));
sa.sin_family = AF_INET;
sa.sin_port = htons(atoi(PORT));

Chapter 7: How to use GnuTLS in applications 26

inet_pton(AF_INET, SERVER, &sa.sin_addr);

err = connect(sd, (SA *) & sa, sizeof(sa));
if (err < 0) {

fprintf(stderr, "Connect error\n");
exit(1);

}

return sd;
}

/* closes the given socket descriptor.
*/
void tcp_close(int sd)
{

shutdown(sd, SHUT_RDWR); /* no more receptions */
close(sd);

}

int main()
{

int ret, sd, ii;
gnutls_session_t session;
char buffer[MAX_BUF + 1];
gnutls_certificate_credentials_t xcred;
/* Allow connections to servers that have OpenPGP keys as well.
*/
const int cert_type_priority[3] = { GNUTLS_CRT_X509,

GNUTLS_CRT_OPENPGP, 0 };

gnutls_global_init();

/* X509 stuff */
gnutls_certificate_allocate_credentials(&xcred);

/* sets the trusted cas file
*/
gnutls_certificate_set_x509_trust_file(xcred, CAFILE, GNUTLS_X509_FMT_PEM);

/* Initialize TLS session
*/
gnutls_init(&session, GNUTLS_CLIENT);

/* Use default priorities */
gnutls_set_default_priority(session);
gnutls_certificate_type_set_priority(session, cert_type_priority);

Chapter 7: How to use GnuTLS in applications 27

/* put the x509 credentials to the current session
*/
gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE, xcred);

/* connect to the peer
*/
sd = tcp_connect();

gnutls_transport_set_ptr(session, (gnutls_transport_ptr_t)sd);

/* Perform the TLS handshake
*/
ret = gnutls_handshake(session);

if (ret < 0) {
fprintf(stderr, "*** Handshake failed\n");
gnutls_perror(ret);
goto end;

} else {
printf("- Handshake was completed\n");

}

gnutls_record_send(session, MSG, strlen(MSG));

ret = gnutls_record_recv(session, buffer, MAX_BUF);
if (ret == 0) {

printf("- Peer has closed the TLS connection\n");
goto end;

} else if (ret < 0) {
fprintf(stderr, "*** Error: %s\n", gnutls_strerror(ret));
goto end;

}

printf("- Received %d bytes: ", ret);
for (ii = 0; ii < ret; ii++) {

fputc(buffer[ii], stdout);
}
fputs("\n", stdout);

gnutls_bye(session, GNUTLS_SHUT_RDWR);

end:

tcp_close(sd);

gnutls_deinit(session);

Chapter 7: How to use GnuTLS in applications 28

gnutls_certificate_free_credentials(xcred);

gnutls_global_deinit();

return 0;
}

7.3.2 Obtaining session information

Most of the times it is desirable to know the security properties of the current established
session. This includes the underlying ciphers and the protocols involved. That is the
purpose of the following function. Note that this function will print meaningful values only
if called after a successful gnutls_handshake.

#include <stdio.h>
#include <stdlib.h>
#include <gnutls/gnutls.h>
#include <gnutls/x509.h>

extern void print_x509_certificate_info(gnutls_session_t);

/* This function will print some details of the
* given session.
*/
int print_info(gnutls_session_t session)
{

const char *tmp;
gnutls_credentials_type_t cred;
gnutls_kx_algorithm_t kx;

/* print the key exchange’s algorithm name
*/
kx = gnutls_kx_get(session);
tmp = gnutls_kx_get_name(kx);
printf("- Key Exchange: %s\n", tmp);

/* Check the authentication type used and switch
* to the appropriate.
*/
cred = gnutls_auth_get_type(session);
switch (cred) {
case GNUTLS_CRD_ANON: /* anonymous authentication */

printf("- Anonymous DH using prime of %d bits\n",
gnutls_dh_get_prime_bits(session));

break;

Chapter 7: How to use GnuTLS in applications 29

case GNUTLS_CRD_CERTIFICATE: /* certificate authentication */

/* Check if we have been using ephemeral Diffie Hellman.
*/
if (kx == GNUTLS_KX_DHE_RSA || kx == GNUTLS_KX_DHE_DSS) {

printf("\n- Ephemeral DH using prime of %d bits\n",
gnutls_dh_get_prime_bits(session));

}

/* if the certificate list is available, then
* print some information about it.
*/
print_x509_certificate_info(session);

} /* switch */

/* print the protocol’s name (ie TLS 1.0)
*/
tmp = gnutls_protocol_get_name(gnutls_protocol_get_version(session));
printf("- Protocol: %s\n", tmp);

/* print the certificate type of the peer.
* ie X.509
*/
tmp = gnutls_certificate_type_get_name(

gnutls_certificate_type_get(session));

printf("- Certificate Type: %s\n", tmp);

/* print the compression algorithm (if any)
*/
tmp = gnutls_compression_get_name(gnutls_compression_get(session));
printf("- Compression: %s\n", tmp);

/* print the name of the cipher used.
* ie 3DES.
*/
tmp = gnutls_cipher_get_name(gnutls_cipher_get(session));
printf("- Cipher: %s\n", tmp);

/* Print the MAC algorithms name.
* ie SHA1
*/
tmp = gnutls_mac_get_name(gnutls_mac_get(session));
printf("- MAC: %s\n", tmp);

Chapter 7: How to use GnuTLS in applications 30

return 0;
}

7.3.3 Verifying peer’s certificate

A TLS session is not secure just after the handshake procedure has finished. It must be
considered secure, only after the peer’s certificate and identity have been verified. That is,
you have to verify the signature in peer’s certificate, the hostname in the certificate, and
expiration dates. Just after this step you should treat the connection as being a secure one.
The following function is an example on how to verify the peer’s certificate chain. This is an
advanced case. Things in a TLS session may be simplified by using gnutls_certificate_
verify_peers2.

#include <stdio.h>
#include <gnutls/gnutls.h>
#include <gnutls/x509.h>

/* All the available CRLs
*/
extern gnutls_x509_crl_t* crl_list;
extern int crl_list_size;

/* All the available trusted CAs
*/
extern gnutls_x509_crt_t* ca_list;
extern int ca_list_size;

static void verify_cert2(gnutls_x509_crt_t crt,
gnutls_x509_crt_t issuer, gnutls_x509_crl_t * crl_list, int crl_list_size);

static void verify_last_cert(gnutls_x509_crt_t crt,
gnutls_x509_crt_t *ca_list, int ca_list_size,
gnutls_x509_crl_t * crl_list, int crl_list_size);

/* This function will try to verify the peer’s certificate chain, and
* also check if the hostname matches, and the activation, expiration dates.
*/
void verify_certificate_chain(gnutls_session_t session, const char* hostname,

const gnutls_datum_t* cert_chain, int cert_chain_length)
{

int i, ret;
gnutls_x509_crt_t cert[cert_chain_length];

/* Import all the certificates in the chain to
* native certificate format.

Chapter 7: How to use GnuTLS in applications 31

*/
for (i=0;i<cert_chain_length;i++) {

gnutls_x509_crt_init(&cert[i]);
gnutls_x509_crt_import(cert[i], &cert_chain[i], GNUTLS_X509_FMT_DER);

}

/* Now verify the certificates against their issuers
* in the chain.
*/
for (i=1;i<cert_chain_length;i++) {

verify_cert2(cert[i-1], cert[i], crl_list, crl_list_size);
}

/* Here we must verify the last certificate in the chain against
* our trusted CA list.
*/
verify_last_cert(cert[cert_chain_length-1],

ca_list, ca_list_size, crl_list, crl_list_size);

/* Check if the name in the first certificate matches our destination!
*/
if (!gnutls_x509_crt_check_hostname(cert[0], hostname)) {

printf("The certificate’s owner does not match hostname ’%s’\n", hostname);
}

for (i=0;i<cert_chain_length;i++)
gnutls_x509_crt_deinit(cert[i]);

return;
}

/* Verifies a certificate against an other certificate
* which is supposed to be it’s issuer. Also checks the
* crl_list if the certificate is revoked.
*/
static void verify_cert2(gnutls_x509_crt crt_t,

gnutls_x509_crt_t issuer, gnutls_x509_crl_t * crl_list, int crl_list_size)
{

unsigned int output;
int ret;
time_t now = time(0);
size_t name_size;
char name[64];

/* Print information about the certificates to
* be checked.

Chapter 7: How to use GnuTLS in applications 32

*/
name_size = sizeof(name);
gnutls_x509_crt_get_dn(crt, name, &name_size);

fprintf(stderr, "\nCertificate: %s\n", name);

name_size = sizeof(name);
gnutls_x509_crt_get_issuer_dn(crt, name, &name_size);

fprintf(stderr, "Issued by: %s\n", name);

/* Get the DN of the issuer cert.
*/
name_size = sizeof(name);
gnutls_x509_crt_get_dn(issuer, name, &name_size);

fprintf(stderr, "Checking against: %s\n", name);

/* Do the actual verification.
*/
gnutls_x509_crt_verify(crt, &issuer, 1, 0, &output);

if (output & GNUTLS_CERT_INVALID) {
fprintf(stderr, "Not trusted");

if (output & GNUTLS_CERT_SIGNER_NOT_FOUND)
fprintf(stderr, ": no issuer was found");

if (output & GNUTLS_CERT_SIGNER_NOT_CA)
fprintf(stderr, ": issuer is not a CA");

fprintf(stderr, "\n");
} else

fprintf(stderr, "Trusted\n");

/* Now check the expiration dates.
*/

if (gnutls_x509_crt_get_activation_time(crt) > now)
fprintf(stderr, "Not yet activated\n");

if (gnutls_x509_crt_get_expiration_time(crt) < now)
fprintf(stderr, "Expired\n");

/* Check if the certificate is revoked.
*/

ret = gnutls_x509_crt_check_revocation(crt, crl_list, crl_list_size);
if (ret == 1) { /* revoked */

Chapter 7: How to use GnuTLS in applications 33

fprintf(stderr, "Revoked\n");
}

}

/* Verifies a certificate against the trusted CA list.
* Also checks the crl_list if the certificate is revoked.
*/
static void verify_last_cert(gnutls_x509_crt_t crt,

gnutls_x509_crt_t *ca_list, int ca_list_size,
gnutls_x509_crl_t * crl_list, int crl_list_size)

{
unsigned int output;
int ret;
time_t now = time(0);
size_t name_size;
char name[64];

/* Print information about the certificates to
* be checked.
*/
name_size = sizeof(name);
gnutls_x509_crt_get_dn(crt, name, &name_size);

fprintf(stderr, "\nCertificate: %s\n", name);

name_size = sizeof(name);
gnutls_x509_crt_get_issuer_dn(crt, name, &name_size);

fprintf(stderr, "Issued by: %s\n", name);

/* Do the actual verification.
*/
gnutls_x509_crt_verify(crt, ca_list, ca_list_size, 0, &output);

if (output & GNUTLS_CERT_INVALID) {
fprintf(stderr, "Not trusted");

if (output & GNUTLS_CERT_SIGNER_NOT_CA)
fprintf(stderr, ": Issuer is not a CA\n");

else
fprintf(stderr, "\n");

} else
fprintf(stderr, "Trusted\n");

/* Now check the expiration dates.

Chapter 7: How to use GnuTLS in applications 34

*/
if (gnutls_x509_crt_get_activation_time(crt) > now)

fprintf(stderr, "Not yet activated\n");

if (gnutls_x509_crt_get_expiration_time(crt) < now)
fprintf(stderr, "Expired\n");

/* Check if the certificate is revoked.
*/
ret = gnutls_x509_crt_check_revocation(crt, crl_list, crl_list_size);
if (ret == 1) { /* revoked */

fprintf(stderr, "Revoked\n");
}

}

7.3.4 Using a callback to select the certificate to use

There are cases where a client holds several certificate and key pairs, and may not want to
load all of them in the credentials structure. The following example demonstrates the use
of the certificate selection callback.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <gnutls/gnutls.h>
#include <gnutls/x509.h>

/* A TLS client that loads the certificate and key.
*/

#define MAX_BUF 1024
#define SA struct sockaddr
#define MSG "GET / HTTP/1.0\r\n\r\n"

#define CERT_FILE "cert.pem"
#define KEY_FILE "key.pem"
#define CAFILE "ca.pem"

static int cert_callback(gnutls_session_t session,

Chapter 7: How to use GnuTLS in applications 35

const gnutls_datum_t* req_ca_rdn, int nreqs,
const gnutls_pk_algorithm_t* sign_algos, int sign_algos_length,
gnutls_retr_st * st);

gnutls_x509_crt_t crt;
gnutls_x509_privkey_t key;

/* Helper functions to load a certificate and key
* files into memory. They use mmap for simplicity.
*/
static gnutls_datum_t mmap_file(const char* file)
{
int fd;
gnutls_datum_t mmaped_file = { NULL, 0 };
struct stat stat_st;
void* ptr;

fd = open(file, 0);
if (fd==-1) return mmaped_file;

fstat(fd, &stat_st);

if ((ptr=mmap(NULL, stat_st.st_size, PROT_READ, MAP_SHARED, fd, 0)) == MAP_FAILED)
return mmaped_file;

mmaped_file.data = ptr;
mmaped_file.size = stat_st.st_size;

return mmaped_file;
}

static void munmap_file(gnutls_datum_t data)
{

munmap(data.data, data.size);
}

/* Load the certificate and the private key.
*/
static void load_keys(void)
{
int ret;
gnutls_datum_t data;

data = mmap_file(CERT_FILE);
if (data.data == NULL) {

fprintf(stderr, "*** Error loading cert file.\n");
exit(1);

Chapter 7: How to use GnuTLS in applications 36

}
gnutls_x509_crt_init(&crt);

ret = gnutls_x509_crt_import(crt, &data, GNUTLS_X509_FMT_PEM);
if (ret < 0) {

fprintf(stderr, "*** Error loading key file: %s\n", gnutls_strerror(ret));
exit(1);

}

munmap_file(data);

data = mmap_file(KEY_FILE);
if (data.data == NULL) {

fprintf(stderr, "*** Error loading key file.\n");
exit(1);

}

gnutls_x509_privkey_init(&key);

ret = gnutls_x509_privkey_import(key, &data, GNUTLS_X509_FMT_PEM);
if (ret < 0) {

fprintf(stderr, "*** Error loading key file: %s\n", gnutls_strerror(ret));
exit(1);

}

munmap_file(data);

}

int main()
{

int ret, sd, ii;
gnutls_session_t session;
char buffer[MAX_BUF + 1];
gnutls_certificate_credentials_t xcred;
/* Allow connections to servers that have OpenPGP keys as well.
*/

gnutls_global_init();

load_keys();

/* X509 stuff */
gnutls_certificate_allocate_credentials(&xcred);

/* sets the trusted cas file
*/

Chapter 7: How to use GnuTLS in applications 37

gnutls_certificate_set_x509_trust_file(xcred, CAFILE, GNUTLS_X509_FMT_PEM);

gnutls_certificate_client_set_retrieve_function(xcred, cert_callback);

/* Initialize TLS session
*/
gnutls_init(&session, GNUTLS_CLIENT);

/* Use default priorities */
gnutls_set_default_priority(session);

/* put the x509 credentials to the current session
*/
gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE, xcred);

/* connect to the peer
*/
sd = tcp_connect();

gnutls_transport_set_ptr(session, (gnutls_transport_ptr_t)sd);

/* Perform the TLS handshake
*/
ret = gnutls_handshake(session);

if (ret < 0) {
fprintf(stderr, "*** Handshake failed\n");
gnutls_perror(ret);
goto end;

} else {
printf("- Handshake was completed\n");

}

gnutls_record_send(session, MSG, strlen(MSG));

ret = gnutls_record_recv(session, buffer, MAX_BUF);
if (ret == 0) {

printf("- Peer has closed the TLS connection\n");
goto end;

} else if (ret < 0) {
fprintf(stderr, "*** Error: %s\n", gnutls_strerror(ret));
goto end;

}

printf("- Received %d bytes: ", ret);
for (ii = 0; ii < ret; ii++) {

fputc(buffer[ii], stdout);

Chapter 7: How to use GnuTLS in applications 38

}
fputs("\n", stdout);

gnutls_bye(session, GNUTLS_SHUT_RDWR);

end:

tcp_close(sd);

gnutls_deinit(session);

gnutls_certificate_free_credentials(xcred);

gnutls_global_deinit();

return 0;
}

/* This callback should be associated with a session by calling
* gnutls_certificate_client_set_retrieve_function(session, cert_callback),
* before a handshake.
*/

static int cert_callback(gnutls_session_t session,
const gnutls_datum_t* req_ca_rdn, int nreqs,
const gnutls_pk_algorithm_t* sign_algos, int sign_algos_length,
gnutls_retr_st * st)

{
char issuer_dn[256];
int i, ret;
size_t len;
gnutls_certificate_type_t type;

/* Print the server’s trusted CAs
*/
if (nreqs > 0)

printf("- Server’s trusted authorities:\n");
else

printf("- Server did not send us any trusted authorities names.\n");

/* print the names (if any) */
for (i = 0; i < nreqs; i++) {

len = sizeof(issuer_dn);
ret = gnutls_x509_rdn_get(&req_ca_rdn[i], issuer_dn, &len);
if (ret >= 0) {

Chapter 7: How to use GnuTLS in applications 39

printf(" [%d]: ", i);
printf("%s\n", issuer_dn);

}
}

/* Select a certificate and return it.
* The certificate must be of any of the "sign algorithms"
* supported by the server.
*/

type = gnutls_certificate_type_get(session);
if (type == GNUTLS_CRT_X509) {

st->type = type;
st->ncerts = 1;

st->cert.x509 = &crt;
st->key.x509 = key;

st->deinit_all = 0;
} else {

return -1;
}

return 0;

}

7.3.5 Client with Resume capability example

This is a modification of the simple client example. Here we demonstrate the use of session
resumption. The client tries to connect once using TLS, close the connection and then try
to establish a new connection using the previously negotiated data.

#include <stdio.h>
#include <stdlib.h>
#include <gnutls/gnutls.h>

/* Those functions are defined in other examples.
*/
extern void check_alert(gnutls_session_t session, int ret);
extern int tcp_connect(void);
extern void tcp_close(int sd);

#define MAX_BUF 1024
#define CRLFILE "crl.pem"
#define CAFILE "ca.pem"

Chapter 7: How to use GnuTLS in applications 40

#define SA struct sockaddr
#define MSG "GET / HTTP/1.0\r\n\r\n"

int main()
{

int ret;
int sd, ii, alert;
gnutls_session_t session;
char buffer[MAX_BUF + 1];
gnutls_certificate_credentials_t xcred;

/* variables used in session resuming
*/
int t;
char *session_data;
size_t session_data_size;

gnutls_global_init();

/* X509 stuff */
gnutls_certificate_allocate_credentials(&xcred);

gnutls_certificate_set_x509_trust_file(xcred, CAFILE, GNUTLS_X509_FMT_PEM);

for (t = 0; t < 2; t++) { /* connect 2 times to the server */

sd = tcp_connect();

gnutls_init(&session, GNUTLS_CLIENT);

gnutls_set_default_priority(session);

gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE, xcred);

if (t > 0) { /* if this is not the first time we connect */
gnutls_session_set_data(session, session_data, session_data_size);
free(session_data);

}

gnutls_transport_set_ptr(session, (gnutls_transport_ptr_t)sd);

/* Perform the TLS handshake
*/
ret = gnutls_handshake(session);

if (ret < 0) {
fprintf(stderr, "*** Handshake failed\n");

Chapter 7: How to use GnuTLS in applications 41

gnutls_perror(ret);
goto end;

} else {
printf("- Handshake was completed\n");

}

if (t == 0) { /* the first time we connect */
/* get the session data size */
gnutls_session_get_data(session, NULL, &session_data_size);
session_data = malloc(session_data_size);

/* put session data to the session variable */
gnutls_session_get_data(session, session_data, &session_data_size);

} else { /* the second time we connect */

/* check if we actually resumed the previous session */
if (gnutls_session_is_resumed(session) != 0) {

printf("- Previous session was resumed\n");
} else {

fprintf(stderr, "*** Previous session was NOT resumed\n");
}

}

/* This function was defined in a previous example
*/
/* print_info(session); */

gnutls_record_send(session, MSG, strlen(MSG));

ret = gnutls_record_recv(session, buffer, MAX_BUF);
if (ret == 0) {

printf("- Peer has closed the TLS connection\n");
goto end;

} else if (ret < 0) {
fprintf(stderr, "*** Error: %s\n", gnutls_strerror(ret));
goto end;

}

printf("- Received %d bytes: ", ret);
for (ii = 0; ii < ret; ii++) {

fputc(buffer[ii], stdout);
}
fputs("\n", stdout);

gnutls_bye(session, GNUTLS_SHUT_RDWR);

Chapter 7: How to use GnuTLS in applications 42

end:

tcp_close(sd);

gnutls_deinit(session);

} /* for() */

gnutls_certificate_free_credentials(xcred);

gnutls_global_deinit();

return 0;
}

7.3.6 Simple client example with SRP authentication

The following client is a very simple SRP TLS client which connects to a server and au-
thenticates using a username and a password. The server may authenticate itself using a
certificate, and in that case it has to be verified.

#include <stdio.h>
#include <stdlib.h>
#include <gnutls/gnutls.h>
#include <gnutls/extra.h>

/* Those functions are defined in other examples.
*/
extern void check_alert(gnutls_session_t session, int ret);
extern int tcp_connect(void);
extern void tcp_close(int sd);

#define MAX_BUF 1024
#define USERNAME "user"
#define PASSWORD "pass"
#define CAFILE "ca.pem"
#define SA struct sockaddr
#define MSG "GET / HTTP/1.0\r\n\r\n"

const int kx_priority[] = { GNUTLS_KX_SRP, GNUTLS_KX_SRP_DSS,
GNUTLS_KX_SRP_RSA, 0 };

int main()
{

int ret;
int sd, ii;

Chapter 7: How to use GnuTLS in applications 43

gnutls_session_t session;
char buffer[MAX_BUF + 1];
gnutls_srp_client_credentials_t srp_cred;
gnutls_certificate_client_credentials_t cert_cred;

gnutls_global_init();

/* now enable the gnutls-extra library which contains the
* SRP stuff.
*/
gnutls_global_init_extra();

gnutls_srp_allocate_client_credentials(&srp_cred);
gnutls_certificate_allocate_client_credentials(&cert_cred);

gnutls_certificate_set_x509_trust_file(cert_cred, CAFILE, GNUTLS_X509_FMT_PEM);
gnutls_srp_set_client_credentials(srp_cred, USERNAME, PASSWORD);

/* connects to server
*/
sd = tcp_connect();

/* Initialize TLS session
*/
gnutls_init(&session, GNUTLS_CLIENT);

/* Set the priorities.
*/
gnutls_set_default_priority(session);
gnutls_kx_set_priority(session, kx_priority);

/* put the SRP credentials to the current session
*/
gnutls_credentials_set(session, GNUTLS_CRD_SRP, srp_cred);
gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE, cert_cred);

gnutls_transport_set_ptr(session, (gnutls_transport_ptr_t)sd);

/* Perform the TLS handshake
*/
ret = gnutls_handshake(session);

if (ret < 0) {
fprintf(stderr, "*** Handshake failed\n");
gnutls_perror(ret);

Chapter 7: How to use GnuTLS in applications 44

goto end;
} else {

printf("- Handshake was completed\n");
}

gnutls_record_send(session, MSG, strlen(MSG));

ret = gnutls_record_recv(session, buffer, MAX_BUF);
if (gnutls_error_is_fatal(ret) == 1 || ret == 0) {

if (ret == 0) {
printf("- Peer has closed the GNUTLS connection\n");
goto end;

} else {
fprintf(stderr, "*** Error: %s\n", gnutls_strerror(ret));
goto end;

}
} else

check_alert(session, ret);

if (ret > 0) {
printf("- Received %d bytes: ", ret);
for (ii = 0; ii < ret; ii++) {

fputc(buffer[ii], stdout);
}
fputs("\n", stdout);

}
gnutls_bye(session, 0);

end:

tcp_close(sd);

gnutls_deinit(session);

gnutls_srp_free_client_credentials(srp_cred);
gnutls_certificate_free_credentials(cert_cred);

gnutls_global_deinit();

return 0;
}

7.4 Server examples

This section contains examples of TLS and SSL servers, using GnuTLS.

Chapter 7: How to use GnuTLS in applications 45

7.4.1 Echo Server with X.509 authentication

This example is a very simple echo server which supports X.509 authentication, using the
RSA ciphersuites.

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <string.h>
#include <unistd.h>
#include <gnutls/gnutls.h>

#define KEYFILE "key.pem"
#define CERTFILE "cert.pem"
#define CAFILE "ca.pem"
#define CRLFILE "crl.pem"

/* This is a sample TLS 1.0 echo server.
*/

#define SA struct sockaddr
#define SOCKET_ERR(err,s) if(err==-1) {perror(s);return(1);}
#define MAX_BUF 1024
#define PORT 5556 /* listen to 5556 port */
#define DH_BITS 1024

/* These are global */
gnutls_certificate_credentials_t x509_cred;

gnutls_session_t initialize_tls_session()
{

gnutls_session_t session;

gnutls_init(&session, GNUTLS_SERVER);

/* avoid calling all the priority functions, since the defaults
* are adequate.
*/
gnutls_set_default_priority(session);

gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE, x509_cred);

Chapter 7: How to use GnuTLS in applications 46

/* request client certificate if any.
*/
gnutls_certificate_server_set_request(session, GNUTLS_CERT_REQUEST);

gnutls_dh_set_prime_bits(session, DH_BITS);

return session;
}

static gnutls_dh_params_t dh_params;

static int generate_dh_params(void) {

/* Generate Diffie Hellman parameters - for use with DHE
* kx algorithms. These should be discarded and regenerated
* once a day, once a week or once a month. Depending on the
* security requirements.
*/
gnutls_dh_params_init(&dh_params);
gnutls_dh_params_generate2(dh_params, DH_BITS);

return 0;
}

int main()
{

int err, listen_sd, i;
int sd, ret;
struct sockaddr_in sa_serv;
struct sockaddr_in sa_cli;
int client_len;
char topbuf[512];
gnutls_session_t session;
char buffer[MAX_BUF + 1];
int optval = 1;

/* this must be called once in the program
*/
gnutls_global_init();

gnutls_certificate_allocate_credentials(&x509_cred);
gnutls_certificate_set_x509_trust_file(x509_cred, CAFILE,

GNUTLS_X509_FMT_PEM);

gnutls_certificate_set_x509_crl_file(x509_cred, CRLFILE,
GNUTLS_X509_FMT_PEM);

Chapter 7: How to use GnuTLS in applications 47

gnutls_certificate_set_x509_key_file(x509_cred, CERTFILE, KEYFILE,
GNUTLS_X509_FMT_PEM);

generate_dh_params();

gnutls_certificate_set_dh_params(x509_cred, dh_params);

/* Socket operations
*/
listen_sd = socket(AF_INET, SOCK_STREAM, 0);
SOCKET_ERR(listen_sd, "socket");

memset(&sa_serv, ’\0’, sizeof(sa_serv));
sa_serv.sin_family = AF_INET;
sa_serv.sin_addr.s_addr = INADDR_ANY;
sa_serv.sin_port = htons(PORT); /* Server Port number */

setsockopt(listen_sd, SOL_SOCKET, SO_REUSEADDR, &optval, sizeof(int));

err = bind(listen_sd, (SA *) & sa_serv, sizeof(sa_serv));
SOCKET_ERR(err, "bind");
err = listen(listen_sd, 1024);
SOCKET_ERR(err, "listen");

printf("Server ready. Listening to port ’%d’.\n\n", PORT);

client_len = sizeof(sa_cli);
for (;;) {

session = initialize_tls_session();

sd = accept(listen_sd, (SA *) & sa_cli, &client_len);

printf("- connection from %s, port %d\n",
inet_ntop(AF_INET, &sa_cli.sin_addr, topbuf,

sizeof(topbuf)), ntohs(sa_cli.sin_port));

gnutls_transport_set_ptr(session, (gnutls_transport_ptr_t)sd);
ret = gnutls_handshake(session);
if (ret < 0) {

close(sd);
gnutls_deinit(session);
fprintf(stderr, "*** Handshake has failed (%s)\n\n",

gnutls_strerror(ret));
continue;

}
printf("- Handshake was completed\n");

Chapter 7: How to use GnuTLS in applications 48

/* see the Getting peer’s information example */
/* print_info(session); */

i = 0;
for (;;) {

bzero(buffer, MAX_BUF + 1);
ret = gnutls_record_recv(session, buffer, MAX_BUF);

if (ret == 0) {
printf

("\n- Peer has closed the GNUTLS connection\n");
break;

} else if (ret < 0) {
fprintf(stderr,

"\n*** Received corrupted data(%d). Closing the connection.\n\n",
ret);

break;
} else if (ret > 0) {

/* echo data back to the client
*/
gnutls_record_send(session, buffer,

strlen(buffer));
}

}
printf("\n");
gnutls_bye(session, GNUTLS_SHUT_WR); /* do not wait for

* the peer to close the connection.
*/

close(sd);
gnutls_deinit(session);

}
close(listen_sd);

gnutls_certificate_free_credentials(x509_cred);

gnutls_global_deinit();

return 0;

}

Chapter 7: How to use GnuTLS in applications 49

7.4.2 Echo Server with X.509 authentication II

The following example is a server which supports X.509 authentication. This server supports
the export-grade cipher suites, the DHE ciphersuites and session resuming.

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <string.h>
#include <unistd.h>
#include <gnutls/gnutls.h>

#define KEYFILE "key.pem"
#define CERTFILE "cert.pem"
#define CAFILE "ca.pem"
#define CRLFILE "crl.pem"

/* This is a sample TLS 1.0 echo server.
* Export-grade ciphersuites and session resuming are supported.
*/

#define SA struct sockaddr
#define SOCKET_ERR(err,s) if(err==-1) {perror(s);return(1);}
#define MAX_BUF 1024
#define PORT 5556 /* listen to 5556 port */
#define DH_BITS 1024

/* These are global */
gnutls_certificate_credentials_t cert_cred;

static void wrap_db_init(void);
static void wrap_db_deinit(void);
static int wrap_db_store(void *dbf, gnutls_datum_t key, gnutls_datum_t data);
static gnutls_datum_t wrap_db_fetch(void *dbf, gnutls_datum_t key);
static int wrap_db_delete(void *dbf, gnutls_datum_t key);

#define TLS_SESSION_CACHE 50

gnutls_session_t initialize_tls_session()
{

gnutls_session_t session;

gnutls_init(&session, GNUTLS_SERVER);

Chapter 7: How to use GnuTLS in applications 50

/* Use the default priorities, plus, export cipher suites.
*/
gnutls_set_default_export_priority(session);

gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE, cert_cred);

/* request client certificate if any.
*/
gnutls_certificate_server_set_request(session, GNUTLS_CERT_REQUEST);

gnutls_dh_set_prime_bits(session, DH_BITS);

if (TLS_SESSION_CACHE != 0) {
gnutls_db_set_retrieve_function(session, wrap_db_fetch);
gnutls_db_set_remove_function(session, wrap_db_delete);
gnutls_db_set_store_function(session, wrap_db_store);
gnutls_db_set_ptr(session, NULL);

}

return session;
}

gnutls_dh_params_t dh_params;
/* Export-grade cipher suites require temporary RSA
* keys.
*/
gnutls_rsa_params_t rsa_params;

int generate_dh_params(void)
{

/* Generate Diffie Hellman parameters - for use with DHE
* kx algorithms. These should be discarded and regenerated
* once a day, once a week or once a month. Depends on the
* security requirements.
*/
gnutls_dh_params_init(&dh_params);
gnutls_dh_params_generate2(dh_params, DH_BITS);

return 0;
}

static int generate_rsa_params(void)
{

gnutls_rsa_params_init(&rsa_params);

/* Generate RSA parameters - for use with RSA-export

Chapter 7: How to use GnuTLS in applications 51

* cipher suites. These should be discarded and regenerated
* once a day, once every 500 transactions etc. Depends on the
* security requirements.
*/

gnutls_rsa_params_generate2(rsa_params, 512);

return 0;
}

int main()
{

int err, listen_sd, i;
int sd, ret;
struct sockaddr_in sa_serv;
struct sockaddr_in sa_cli;
int client_len;
char topbuf[512];
gnutls_session_t session;
char buffer[MAX_BUF + 1];
int optval = 1;
char name[256];

strcpy(name, "Echo Server");

/* this must be called once in the program
*/
gnutls_global_init();

gnutls_certificate_allocate_credentials(&cert_cred);

gnutls_certificate_set_x509_trust_file(cert_cred, CAFILE,
GNUTLS_X509_FMT_PEM);

gnutls_certificate_set_x509_crl_file(cert_cred, CRLFILE,
GNUTLS_X509_FMT_PEM);

gnutls_certificate_set_x509_key_file(cert_cred, CERTFILE, KEYFILE,
GNUTLS_X509_FMT_PEM);

generate_dh_params();
generate_rsa_params();

if (TLS_SESSION_CACHE != 0) {
wrap_db_init();

}

Chapter 7: How to use GnuTLS in applications 52

gnutls_certificate_set_dh_params(cert_cred, dh_params);
gnutls_certificate_set_rsa_export_params(cert_cred, rsa_params);

/* Socket operations
*/
listen_sd = socket(AF_INET, SOCK_STREAM, 0);
SOCKET_ERR(listen_sd, "socket");

memset(&sa_serv, ’\0’, sizeof(sa_serv));
sa_serv.sin_family = AF_INET;
sa_serv.sin_addr.s_addr = INADDR_ANY;
sa_serv.sin_port = htons(PORT); /* Server Port number */

setsockopt(listen_sd, SOL_SOCKET, SO_REUSEADDR, &optval, sizeof(int));

err = bind(listen_sd, (SA *) & sa_serv, sizeof(sa_serv));
SOCKET_ERR(err, "bind");
err = listen(listen_sd, 1024);
SOCKET_ERR(err, "listen");

printf("%s ready. Listening to port ’%d’.\n\n", name, PORT);

client_len = sizeof(sa_cli);
for (;;) {

session = initialize_tls_session();

sd = accept(listen_sd, (SA *) & sa_cli, &client_len);

printf("- connection from %s, port %d\n",
inet_ntop(AF_INET, &sa_cli.sin_addr, topbuf,

sizeof(topbuf)), ntohs(sa_cli.sin_port));

gnutls_transport_set_ptr(session, (gnutls_transport_ptr_t)sd);
ret = gnutls_handshake(session);
if (ret < 0) {

close(sd);
gnutls_deinit(session);
fprintf(stderr, "*** Handshake has failed (%s)\n\n",

gnutls_strerror(ret));
continue;

}
printf("- Handshake was completed\n");

/* print_info(session); */

i = 0;
for (;;) {

Chapter 7: How to use GnuTLS in applications 53

bzero(buffer, MAX_BUF + 1);
ret = gnutls_record_recv(session, buffer, MAX_BUF);

if (ret == 0) {
printf("\n- Peer has closed the TLS connection\n");
break;

} else if (ret < 0) {
fprintf(stderr,

"\n*** Received corrupted data(%d). Closing the connection.\n\n",
ret);

break;
} else if (ret > 0) {

/* echo data back to the client
*/
gnutls_record_send(session, buffer, strlen(buffer));

}
}
printf("\n");
gnutls_bye(session, GNUTLS_SHUT_WR); /* do not wait for

* the peer to close the connection.
*/

close(sd);
gnutls_deinit(session);

}
close(listen_sd);

gnutls_certificate_free_credentials(cert_cred);

gnutls_global_deinit();

return 0;

}

/* Functions and other stuff needed for session resuming.
* This is done using a very simple list which holds session ids
* and session data.
*/

#define MAX_SESSION_ID_SIZE 32
#define MAX_SESSION_DATA_SIZE 512

typedef struct {
char session_id[MAX_SESSION_ID_SIZE];

Chapter 7: How to use GnuTLS in applications 54

int session_id_size;

char session_data[MAX_SESSION_DATA_SIZE];
int session_data_size;

} CACHE;

static CACHE *cache_db;
static int cache_db_ptr = 0;

static void wrap_db_init(void)
{

/* allocate cache_db */
cache_db = calloc(1, TLS_SESSION_CACHE * sizeof(CACHE));

}

static void wrap_db_deinit(void)
{

return;
}

static int wrap_db_store(void *dbf, gnutls_datum_t key, gnutls_datum_t data)
{

if (cache_db == NULL)
return -1;

if (key.size > MAX_SESSION_ID_SIZE)
return -1;

if (data.size > MAX_SESSION_DATA_SIZE)
return -1;

memcpy(cache_db[cache_db_ptr].session_id, key.data, key.size);
cache_db[cache_db_ptr].session_id_size = key.size;

memcpy(cache_db[cache_db_ptr].session_data, data.data, data.size);
cache_db[cache_db_ptr].session_data_size = data.size;

cache_db_ptr++;
cache_db_ptr %= TLS_SESSION_CACHE;

return 0;
}

static gnutls_datum_t wrap_db_fetch(void *dbf, gnutls_datum_t key)
{

gnutls_datum_t res = { NULL, 0 };

Chapter 7: How to use GnuTLS in applications 55

int i;

if (cache_db == NULL)
return res;

for (i = 0; i < TLS_SESSION_CACHE; i++) {
if (key.size == cache_db[i].session_id_size &&

memcmp(key.data, cache_db[i].session_id, key.size) == 0) {

res.size = cache_db[i].session_data_size;

res.data = gnutls_malloc(res.size);
if (res.data == NULL)

return res;

memcpy(res.data, cache_db[i].session_data, res.size);

return res;
}

}
return res;

}

static int wrap_db_delete(void *dbf, gnutls_datum_t key)
{

int i;

if (cache_db == NULL)
return -1;

for (i = 0; i < TLS_SESSION_CACHE; i++) {
if (key.size == cache_db[i].session_id_size &&

memcmp(key.data, cache_db[i].session_id, key.size) == 0) {

cache_db[i].session_id_size = 0;
cache_db[i].session_data_size = 0;

return 0;
}

}

return -1;

}

Chapter 7: How to use GnuTLS in applications 56

7.4.3 Echo Server with OpenPGPauthentication

The following example is an echo server which supports OpenPGP key authentication. You
can easily combine this functionality –that is have a server that supports both X.509 and
OpenPGP certificates– but we separated them to keep these examples as simple as possible.

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <string.h>
#include <unistd.h>
#include <gnutls/gnutls.h>
/* Must be linked against gnutls-extra.
*/
#include <gnutls/extra.h>

#define KEYFILE "secret.asc"
#define CERTFILE "public.asc"
#define RINGFILE "ring.gpg"

/* This is a sample TLS 1.0-OpenPGP echo server.
*/

#define SA struct sockaddr
#define SOCKET_ERR(err,s) if(err==-1) {perror(s);return(1);}
#define MAX_BUF 1024
#define PORT 5556 /* listen to 5556 port */
#define DH_BITS 1024

/* These are global */
gnutls_certificate_credentials_t cred;
const int cert_type_priority[2] = { GNUTLS_CRT_OPENPGP, 0 };
gnutls_dh_params_t dh_params;

/* Defined in a previous example */
extern int generate_dh_params(void);
extern gnutls_session_t initialize_tls_session(void);

int main()
{

int err, listen_sd, i;
int sd, ret;

Chapter 7: How to use GnuTLS in applications 57

struct sockaddr_in sa_serv;
struct sockaddr_in sa_cli;
int client_len;
char topbuf[512];
gnutls_session_t session;
char buffer[MAX_BUF + 1];
int optval = 1;
char name[256];

strcpy(name, "Echo Server");

/* this must be called once in the program
*/
gnutls_global_init();

gnutls_certificate_allocate_credentials(&cred);
gnutls_certificate_set_openpgp_keyring_file(cred, RINGFILE);

gnutls_certificate_set_openpgp_key_file(cred, CERTFILE, KEYFILE);

generate_dh_params();

gnutls_certificate_set_dh_params(cred, dh_params);

/* Socket operations
*/
listen_sd = socket(AF_INET, SOCK_STREAM, 0);
SOCKET_ERR(listen_sd, "socket");

memset(&sa_serv, ’\0’, sizeof(sa_serv));
sa_serv.sin_family = AF_INET;
sa_serv.sin_addr.s_addr = INADDR_ANY;
sa_serv.sin_port = htons(PORT); /* Server Port number */

setsockopt(listen_sd, SOL_SOCKET, SO_REUSEADDR, &optval, sizeof(int));

err = bind(listen_sd, (SA *) & sa_serv, sizeof(sa_serv));
SOCKET_ERR(err, "bind");
err = listen(listen_sd, 1024);
SOCKET_ERR(err, "listen");

printf("%s ready. Listening to port ’%d’.\n\n", name, PORT);

client_len = sizeof(sa_cli);
for (;;) {

session = initialize_tls_session();
gnutls_certificate_type_set_priority(session, cert_type_priority);

Chapter 7: How to use GnuTLS in applications 58

sd = accept(listen_sd, (SA *) & sa_cli, &client_len);

printf("- connection from %s, port %d\n",
inet_ntop(AF_INET, &sa_cli.sin_addr, topbuf,

sizeof(topbuf)), ntohs(sa_cli.sin_port));

gnutls_transport_set_ptr(session, (gnutls_transport_ptr_t)sd);
ret = gnutls_handshake(session);
if (ret < 0) {

close(sd);
gnutls_deinit(session);
fprintf(stderr, "*** Handshake has failed (%s)\n\n",

gnutls_strerror(ret));
continue;

}
printf("- Handshake was completed\n");

/* see the Getting peer’s information example */
/* print_info(session); */

i = 0;
for (;;) {

bzero(buffer, MAX_BUF + 1);
ret = gnutls_record_recv(session, buffer, MAX_BUF);

if (ret == 0) {
printf

("\n- Peer has closed the GNUTLS connection\n");
break;

} else if (ret < 0) {
fprintf(stderr,

"\n*** Received corrupted data(%d). Closing the connection.\n\n",
ret);

break;
} else if (ret > 0) {

/* echo data back to the client
*/
gnutls_record_send(session, buffer,

strlen(buffer));
}

}
printf("\n");
gnutls_bye(session, GNUTLS_SHUT_WR); /* do not wait for

* the peer to close the connection.
*/

Chapter 7: How to use GnuTLS in applications 59

close(sd);
gnutls_deinit(session);

}
close(listen_sd);

gnutls_certificate_free_credentials(cred);

gnutls_global_deinit();

return 0;

}

7.4.4 Echo Server with SRP authentication

This is a server which supports SRP authentication. It is also possible to combine this
functionality with a certificate server. Here it is separate for simplicity.

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <string.h>
#include <unistd.h>
#include <gnutls/gnutls.h>
#include <gnutls/extra.h>

#define SRP_PASSWD "tpasswd"
#define SRP_PASSWD_CONF "tpasswd.conf"

#define KEYFILE "key.pem"
#define CERTFILE "cert.pem"
#define CAFILE "ca.pem"

/* This is a sample TLS-SRP echo server.
*/

#define SA struct sockaddr
#define SOCKET_ERR(err,s) if(err==-1) {perror(s);return(1);}
#define MAX_BUF 1024
#define PORT 5556 /* listen to 5556 port */

Chapter 7: How to use GnuTLS in applications 60

/* These are global */
gnutls_srp_server_credentials_t srp_cred;
gnutls_certificate_credentials_t cert_cred;

gnutls_session_t initialize_tls_session()
{

gnutls_session_t session;
const int kx_priority[] = { GNUTLS_KX_SRP, GNUTLS_KX_SRP_DSS,

GNUTLS_KX_SRP_RSA, 0 };

gnutls_init(&session, GNUTLS_SERVER);

gnutls_set_default_priority(session);
gnutls_kx_set_priority(session, kx_priority);

gnutls_credentials_set(session, GNUTLS_CRD_SRP, srp_cred);
/* for the certificate authenticated ciphersuites.
*/
gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE, cert_cred);

/* request client certificate if any.
*/
gnutls_certificate_server_set_request(session, GNUTLS_CERT_IGNORE);

return session;
}

int main()
{

int err, listen_sd, i;
int sd, ret;
struct sockaddr_in sa_serv;
struct sockaddr_in sa_cli;
int client_len;
char topbuf[512];
gnutls_session_t session;
char buffer[MAX_BUF + 1];
int optval = 1;
char name[256];

strcpy(name, "Echo Server");

/* these must be called once in the program
*/
gnutls_global_init();
gnutls_global_init_extra(); /* for SRP */

Chapter 7: How to use GnuTLS in applications 61

/* SRP_PASSWD a password file (created with the included srptool utility)
*/
gnutls_srp_allocate_server_credentials(&srp_cred);
gnutls_srp_set_server_credentials_file(srp_cred, SRP_PASSWD, SRP_PASSWD_CONF);

gnutls_certificate_allocate_credentials(&cert_cred);
gnutls_certificate_set_x509_trust_file(cert_cred, CAFILE, GNUTLS_X509_FMT_PEM);
gnutls_certificate_set_x509_key_file(cert_cred, CERTFILE, KEYFILE,

GNUTLS_X509_FMT_PEM);

/* TCP socket operations
*/
listen_sd = socket(AF_INET, SOCK_STREAM, 0);
SOCKET_ERR(listen_sd, "socket");

memset(&sa_serv, ’\0’, sizeof(sa_serv));
sa_serv.sin_family = AF_INET;
sa_serv.sin_addr.s_addr = INADDR_ANY;
sa_serv.sin_port = htons(PORT); /* Server Port number */

setsockopt(listen_sd, SOL_SOCKET, SO_REUSEADDR, &optval, sizeof(int));

err = bind(listen_sd, (SA *) & sa_serv, sizeof(sa_serv));
SOCKET_ERR(err, "bind");
err = listen(listen_sd, 1024);
SOCKET_ERR(err, "listen");

printf("%s ready. Listening to port ’%d’.\n\n", name, PORT);

client_len = sizeof(sa_cli);
for (;;) {

session = initialize_tls_session();

sd = accept(listen_sd, (SA *) & sa_cli, &client_len);

printf("- connection from %s, port %d\n",
inet_ntop(AF_INET, &sa_cli.sin_addr, topbuf,

sizeof(topbuf)), ntohs(sa_cli.sin_port));

gnutls_transport_set_ptr(session, (gnutls_transport_ptr_t)sd);
ret = gnutls_handshake(session);
if (ret < 0) {

close(sd);
gnutls_deinit(session);
fprintf(stderr, "*** Handshake has failed (%s)\n\n",

gnutls_strerror(ret));
continue;

Chapter 7: How to use GnuTLS in applications 62

}
printf("- Handshake was completed\n");

/* print_info(session); */

i = 0;
for (;;) {

bzero(buffer, MAX_BUF + 1);
ret = gnutls_record_recv(session, buffer, MAX_BUF);

if (ret == 0) {
printf

("\n- Peer has closed the GNUTLS connection\n");
break;

} else if (ret < 0) {
fprintf(stderr,

"\n*** Received corrupted data(%d). Closing the connection.\n\n",
ret);

break;
} else if (ret > 0) {

/* echo data back to the client
*/
gnutls_record_send(session, buffer,

strlen(buffer));
}

}
printf("\n");
gnutls_bye(session, GNUTLS_SHUT_WR); /* do not wait for

* the peer to close the connection.
*/

close(sd);
gnutls_deinit(session);

}
close(listen_sd);

gnutls_srp_free_server_credentials(srp_cred);
gnutls_certificate_free_credentials(cert_cred);

gnutls_global_deinit();

return 0;

}

Chapter 7: How to use GnuTLS in applications 63

7.5 Miscellaneous examples

7.5.1 Checking for an alert

This is a function that checks if an alert has been received in the current session.

#include <stdio.h>
#include <stdlib.h>
#include <gnutls/gnutls.h>

/* This function will check whether the given return code from
* a gnutls function (recv/send), is an alert, and will print
* that alert.
*/
void check_alert(gnutls_session_t session, int ret)
{

int last_alert;

if (ret == GNUTLS_E_WARNING_ALERT_RECEIVED
|| ret == GNUTLS_E_FATAL_ALERT_RECEIVED) {
last_alert = gnutls_alert_get(session);

/* The check for renegotiation is only useful if we are
* a server, and we had requested a rehandshake.
*/
if (last_alert == GNUTLS_A_NO_RENEGOTIATION &&

ret == GNUTLS_E_WARNING_ALERT_RECEIVED)
printf("* Received NO_RENEGOTIATION alert. "

"Client Does not support renegotiation.\n");
else

printf("* Received alert ’%d’: %s.\n", last_alert,
gnutls_alert_get_name(last_alert));

}
}

7.5.2 X.509 certificate parsing example

To demonstrate the X.509 parsing capabilities an example program is listed below. That
program reads the peer’s certificate, and prints information about it.

#include <stdio.h>
#include <stdlib.h>
#include <gnutls/gnutls.h>
#include <gnutls/x509.h>

static const char* bin2hex(const void* bin, size_t bin_size)
{

Chapter 7: How to use GnuTLS in applications 64

static char printable[110];
unsigned char *_bin = bin;
char* print;

if (bin_size > 50) bin_size = 50;

print = printable;
for (i = 0; i < bin_size; i++) {

sprintf(print, "%.2x ", _bin[i]);
print += 2;

}

return printable;
}

/* This function will print information about this session’s peer
* certificate.
*/
static void print_x509_certificate_info(gnutls_session_t session)
{

char serial[40];
char dn[128];
int i;
size_t size;
unsigned int algo, bits;
time_t expiration_time, activation_time;
const gnutls_datum_t *cert_list;
int cert_list_size = 0;
gnutls_x509_crt_t cert;

/* This function only works for X.509 certificates.
*/
if (gnutls_certificate_type_get(session) != GNUTLS_CRT_X509)

return;

cert_list = gnutls_certificate_get_peers(session, &cert_list_size);

printf("Peer provided %d certificates.\n", cert_list_size);

if (cert_list_size > 0) {

/* we only print information about the first certificate.
*/
gnutls_x509_crt_init(&cert);

gnutls_x509_crt_import(cert, &cert_list[0]);

Chapter 7: How to use GnuTLS in applications 65

printf("Certificate info:\n");

expiration_time = gnutls_x509_crt_get_expiration_time(cert);
activation_time = gnutls_x509_crt_get_activation_time(cert);

printf("\tCertificate is valid since: %s", ctime(&activation_time));
printf("\tCertificate expires: %s", ctime(&expiration_time));

/* Print the serial number of the certificate.
*/
size = sizeof(serial);
gnutls_x509_crt_get_serial(cert, serial, &size);

size = sizeof(serial);
printf("\tCertificate serial number: %s\n",

bin2hex(serial, size));

/* Extract some of the public key algorithm’s parameters
*/
algo =

gnutls_x509_crt_get_pk_algorithm(cert, &bits);

printf("Certificate public key: %s", gnutls_pk_algorithm_get_name(algo));

/* Print the version of the X.509
* certificate.
*/
printf("\tCertificate version: #%d\n",

gnutls_x509_crt_get_version(cert));

size = sizeof(dn);
gnutls_x509_crt_get_dn(cert, dn, &size);
printf("\tDN: %s\n", dn);

size = sizeof(dn);
gnutls_x509_crt_get_issuer_dn(cert, dn, &size);
printf("\tIssuer’s DN: %s\n", dn);

gnutls_x509_crt_deinit(cert);

}
}

7.5.3 Certificate request generation

Chapter 7: How to use GnuTLS in applications 66

The following example is about generating a certificate request, and a private key. A cer-
tificate request can be later be processed by a CA, which should return a signed certificate.

#include <stdio.h>
#include <stdlib.h>
#include <gnutls/gnutls.h>
#include <gnutls/x509.h>
#include <time.h>

/* This example will generate a private key and a certificate
* request.
*/

int main()
{

gnutls_x509_crq_t crq;
gnutls_x509_privkey_t key;
unsigned char buffer[10*1024];
int buffer_size = sizeof(buffer);
int ret;

gnutls_global_init();

/* Initialize an empty certificate request, and
* an empty private key.
*/
gnutls_x509_crq_init(&crq);

gnutls_x509_privkey_init(&key);

/* Generate a 1024 bit RSA private key.
*/
gnutls_x509_privkey_generate(key, GNUTLS_PK_RSA, 1024, 0);

/* Add stuff to the distinguished name
*/
gnutls_x509_crq_set_dn_by_oid(crq, GNUTLS_OID_X520_COUNTRY_NAME,

0, "GR", 2);

gnutls_x509_crq_set_dn_by_oid(crq, GNUTLS_OID_X520_COMMON_NAME,
0, "Nikos", strlen("Nikos"));

/* Set the request version.
*/
gnutls_x509_crq_set_version(crq, 1);

Chapter 7: How to use GnuTLS in applications 67

/* Set a challenge password.
*/
gnutls_x509_crq_set_challenge_password(crq, "something to remember here");

/* Associate the request with the private key
*/
gnutls_x509_crq_set_key(crq, key);

/* Self sign the certificate request.
*/
gnutls_x509_crq_sign(crq, key);

/* Export the PEM encoded certificate request, and
* display it.
*/
gnutls_x509_crq_export(crq, GNUTLS_X509_FMT_PEM, buffer,

&buffer_size);

printf("Certificate Request: \n%s", buffer);

/* Export the PEM encoded private key, and
* display it.
*/
buffer_size = sizeof(buffer);
gnutls_x509_privkey_export(key, GNUTLS_X509_FMT_PEM, buffer,

&buffer_size);

printf("\n\nPrivate key: \n%s", buffer);

gnutls_x509_crq_deinit(crq);
gnutls_x509_privkey_deinit(key);

return 0;

}

7.5.4 PKCS #12 structure generation

The following example is about generating a PKCS #12 structure.

#include <stdio.h>
#include <stdlib.h>
#include <gnutls/gnutls.h>
#include <gnutls/pkcs12.h>

Chapter 7: How to use GnuTLS in applications 68

#define OUTFILE "out.p12"

/* This function will write a pkcs12 structure into a file.
* cert: is a DER encoded certificate
* pkcs8_key: is a PKCS #8 encrypted key (note that this must be
* encrypted using a PKCS #12 cipher, or some browsers will crash)
* password: is the password used to encrypt the PKCS #12 packet.
*/
int write_pkcs12(const gnutls_datum_t * cert, const gnutls_datum_t * pkcs8_key,

const char *password)
{

gnutls_pkcs12_t pkcs12;
int ret, bag_index;
gnutls_pkcs12_bag_t bag, key_bag;
char pkcs12_struct[10 * 1024];
int pkcs12_struct_size;
FILE *fd;

/* A good idea might be to use gnutls_x509_privkey_get_key_id()
* to obtain a unique ID.
*/
gnutls_datum_t key_id = { "\x00\x00\x07", 3 };

gnutls_global_init();

/* Firstly we create two helper bags, which hold the certificate,
* and the (encrypted) key.
*/

gnutls_pkcs12_bag_init(&bag);
gnutls_pkcs12_bag_init(&key_bag);

ret = gnutls_pkcs12_bag_set_data(bag, GNUTLS_BAG_CERTIFICATE, cert);
if (ret < 0) {

fprintf(stderr, "ret: %s\n", gnutls_strerror(ret));
exit(1);

}

/* ret now holds the bag’s index.
*/
bag_index = ret;

/* Associate a friendly name with the given certificate. Used
* by browsers.
*/
gnutls_pkcs12_bag_set_friendly_name(bag, bag_index, "My name");

Chapter 7: How to use GnuTLS in applications 69

/* Associate the certificate with the key using a unique key
* ID.
*/
gnutls_pkcs12_bag_set_key_id(bag, bag_index, &key_id);

/* use weak encryption for the certificate.
*/
gnutls_pkcs12_bag_encrypt(bag, password, GNUTLS_PKCS_USE_PKCS12_RC2_40);

/* Now the key.
*/

ret = gnutls_pkcs12_bag_set_data(key_bag,
GNUTLS_BAG_PKCS8_ENCRYPTED_KEY,
pkcs8_key);

if (ret < 0) {
fprintf(stderr, "ret: %s\n", gnutls_strerror(ret));
exit(1);

}

/* Note that since the PKCS #8 key is already encrypted we don’t
* bother encrypting that bag.
*/
bag_index = ret;

gnutls_pkcs12_bag_set_friendly_name(key_bag, bag_index, "My name");

gnutls_pkcs12_bag_set_key_id(key_bag, bag_index, &key_id);

/* The bags were filled. Now create the PKCS #12 structure.
*/
gnutls_pkcs12_init(&pkcs12);

/* Insert the two bags in the PKCS #12 structure.
*/

gnutls_pkcs12_set_bag(pkcs12, bag);
gnutls_pkcs12_set_bag(pkcs12, key_bag);

/* Generate a message authentication code for the PKCS #12
* structure.
*/
gnutls_pkcs12_generate_mac(pkcs12, password);

pkcs12_struct_size = sizeof(pkcs12_struct);

Chapter 7: How to use GnuTLS in applications 70

ret =
gnutls_pkcs12_export(pkcs12, GNUTLS_X509_FMT_DER, pkcs12_struct,

&pkcs12_struct_size);
if (ret < 0) {

fprintf(stderr, "ret: %s\n", gnutls_strerror(ret));
exit(1);

}

fd = fopen(OUTFILE, "w");
if (fd == NULL) {

fprintf(stderr, "cannot open file\n");
exit(1);

}
fwrite(pkcs12_struct, 1, pkcs12_struct_size, fd);
fclose(fd);

gnutls_pkcs12_bag_deinit(bag);
gnutls_pkcs12_bag_deinit(key_bag);
gnutls_pkcs12_deinit(pkcs12);

}

7.6 Compatibility with the OpenSSL library

To ease GnuTLS’ integration with existing applications, a compatibility layer with the widely
used OpenSSL library is included in the gnutls-openssl library. This compatibility layer
is not complete and it is not intended to completely reimplement the OpenSSL API with
GnuTLS. It only provides source-level compatibility. There is currently no attempt to make
it binary-compatible with OpenSSL.

The prototypes for the compatibility functions are in the ‘gnutls/openssl.h’ header
file.

Current limitations imposed by the compatibility layer include:
• Error handling is not thread safe.

Chapter 8: Included programs 71

8 Included programs

8.1 Invoking srptool

The “srptool” is a very simple program that emulates the programs in the Stanford SRP
libraries. It is intended for use in places where you don’t expect SRP authentication to be
the used for system users. Traditionally libsrp used two files. One called ’tpasswd’ which
holds usernames and verifiers, and ’tpasswd.conf’ which holds generators and primes.

How to use srptool:
• To create tpasswd.conf which holds the g and n values for SRP protocol (generator and

a large prime), run:
$ srptool --create-conf /etc/tpasswd.conf

• This command will create /etc/tpasswd and will add user ’test’ (you will also be
prompted for a password). Verifiers are stored by default in the way libsrp expects.

$ srptool --passwd /etc/tpasswd \
--passwd-conf /etc/tpasswd.conf -u test

• This command will check against a password. If the password matches the one in
/etc/tpasswd you will get an ok.

$ srptool --passwd /etc/tpasswd \
--passwd-conf /etc/tpasswd.conf --verify -u test

8.2 Invoking gnutls-cli-debug

This program was created to assist in debugging GnuTLS, but it might be useful to extract
a TLS server’s capabilities. It’s purpose is to connect onto a TLS server, perform some tests
and print the server’s capabilities. If called with the ‘-v’ parameter a more checks will be
performed. An example output is:

crystal:/cvs/gnutls/src$./gnutls-cli-debug localhost -p 5556
Resolving ’localhost’...
Connecting to ’127.0.0.1:5556’...
Checking for TLS 1.1 support... yes
Checking fallback from TLS 1.1 to... N/A
Checking for TLS 1.0 support... yes
Checking for SSL 3.0 support... yes
Checking for version rollback bug in RSA PMS... no
Checking for version rollback bug in Client Hello... no
Checking whether we need to disable TLS 1.0... N/A
Checking whether the server ignores the RSA PMS version... no
Checking whether the server can accept Hello Extensions... yes
Checking whether the server can accept cipher suites not in SSL 3.0 spec... yes
Checking whether the server can accept a bogus TLS record version in the client hello... yes
Checking for certificate information... N/A
Checking for trusted CAs... N/A
Checking whether the server understands TLS closure alerts... yes
Checking whether the server supports session resumption... yes

Chapter 8: Included programs 72

Checking for export-grade ciphersuite support... no
Checking RSA-export ciphersuite info... N/A
Checking for anonymous authentication support... no
Checking anonymous Diffie Hellman group info... N/A
Checking for ephemeral Diffie Hellman support... no
Checking ephemeral Diffie Hellman group info... N/A
Checking for AES cipher support (TLS extension)... yes
Checking for 3DES cipher support... yes
Checking for ARCFOUR 128 cipher support... yes
Checking for ARCFOUR 40 cipher support... no
Checking for MD5 MAC support... yes
Checking for SHA1 MAC support... yes
Checking for RIPEMD160 MAC support (TLS extension)... yes
Checking for ZLIB compression support (TLS extension)... yes
Checking for LZO compression support (GnuTLS extension)... yes
Checking for max record size (TLS extension)... yes
Checking for SRP authentication support (TLS extension)... yes
Checking for OpenPGP authentication support (TLS extension)... no

8.3 Invoking certtool

This is a program to generate X.509 certificates, certificate requests, CRLs and private keys.
The program can be used interactively or non interactively by specifying the --template
command line option. See ‘doc/certtool.cfg’, in the distribution, for an example of a
template file.

How to use certtool interactively:
• To create a self signed certificate, use the command:

$ certtool --generate-privkey --outfile ca-key.pem
$ certtool --generate-self-signed --load-privkey ca-key.pem \

--outfile ca-cert.pem

Note that a self-signed certificate usually belongs to a certificate authority, that signs
other certificates.

• To create a private key, run:
$ certtool --generate-privkey --outfile key.pem

• To create a certificate request, run:
$ certtool --generate-request --load-privkey key.pem \
--outfile request.pem

• To generate a certificate using the previous request, use the command:
$ certtool --generate-certificate --load-request request.pem \

--outfile cert.pem \
--load-ca-certificate ca-cert.pem --load-ca-privkey ca-key.pem

• To view the certificate information, use:
$ certtool --certificate-info --infile cert.pem

• To generate a PKCS #12 structure using the previous key and certificate, use the
command:

Chapter 8: Included programs 73

$ certtool --load-certificate cert.pem --load-privkey key.pem \
--to-p12 --outder --outfile key.p12

Certtool’s template file format:
• Firstly create a file named ’cert.cfg’ that contains the information about the certificate.

An example file is listed below.
• Then execute:

$ certtool --generate-certificate cert.pem --load-privkey key.pem \
--template cert.cfg \
--load-ca-certificate ca-cert.pem --load-ca-privkey ca-key.pem

An example certtool template file:
X.509 Certificate options
#
DN options

The organization of the subject.
organization = "Koko inc."

The organizational unit of the subject.
unit = "sleeping dept."

The locality of the subject.
locality =

The state of the certificate owner.
state = "Attiki"

The country of the subject. Two letter code.
country = GR

The common name of the certificate owner.
cn = "Cindy Lauper"

A user id of the certificate owner.
#uid = "clauper"

If the supported DN OIDs are not adequate you can set
any OID here.
For example set the X.520 Title and the X.520 Pseudonym
by using OID and string pairs.
#dn_oid = "2.5.4.12" "Dr." "2.5.4.65" "jackal"

This is deprecated and should not be used in new
certificates.
pkcs9_email = "none@none.org"

Chapter 8: Included programs 74

The serial number of the certificate
serial = 007

In how many days, counting from today, this certificate will expire.
expiration_days = 700

X.509 v3 extensions

A dnsname in case of a WWW server.
#dns_name = "www.none.org"

An IP address in case of a server.
#ip_address = "192.168.1.1"

An email in case of a person
email = "none@none.org"

An URL that has CRLs (certificate revocation lists)
available. Needed in CA certificates.
#crl_dist_points = "http://www.getcrl.crl/getcrl/"

Whether this is a CA certificate or not
#ca

Whether this certificate will be used for a TLS client
#tls_www_client

Whether this certificate will be used for a TLS server
#tls_www_server

Whether this certificate will be used to sign data (needed
in TLS DHE ciphersuites).
signing_key

Whether this certificate will be used to encrypt data (needed
in TLS RSA ciphersuites). Note that it is prefered to use different
keys for encryption and signing.
#encryption_key

Whether this key will be used to sign other certificates.
#cert_signing_key

Whether this key will be used to sign CRLs.
#crl_signing_key

Whether this key will be used to sign code.
#code_signing_key

Chapter 8: Included programs 75

Whether this key will be used to sign OCSP data.
#ocsp_signing_key

Whether this key will be used for time stamping.
#time_stamping_key

Chapter 9: Function reference 76

9 Function reference

9.1 Core functions

The prototypes for the following functions lie in ‘gnutls/gnutls.h’.

[Function]const char * gnutls_alert_get_name (gnutls alert level t alert)
alert: is an alert number gnutls_session_t structure.

Returns a string that describes the given alert number or NULL. See gnutls_alert_
get().

[Function]gnutls_alert_description_t gnutls_alert_get (gnutls session t
session)

session: is a gnutls_session_t structure.

Returns the last alert number received. This function should be called if
GNUTLS E WARNING ALERT RECEIVED or GNUTLS E FATAL ALERT RECEIVED
has been returned by a gnutls function. The peer may send alerts if he thinks some
things were not right. Check gnutls.h for the available alert descriptions.

[Function]int gnutls_alert_send (gnutls session t session, gnutls alert level t
level, gnutls alert description t desc)

session: is a gnutls_session_t structure.

level: is the level of the alert

desc: is the alert description

This function will send an alert to the peer in order to inform him of something
important (eg. his Certificate could not be verified). If the alert level is Fatal then
the peer is expected to close the connection, otherwise he may ignore the alert and
continue.

The error code of the underlying record send function will be returned, so you may
also receive GNUTLS E INTERRUPTED or GNUTLS E AGAIN as well.

Returns 0 on success.

[Function]int gnutls_anon_allocate_client_credentials
(gnutls anon client credentials t * sc)

sc: is a pointer to an gnutls_anon_client_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to allocate it.

[Function]int gnutls_anon_allocate_server_credentials
(gnutls anon server credentials t * sc)

sc: is a pointer to an gnutls_anon_server_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to allocate it.

Chapter 9: Function reference 77

[Function]void gnutls_anon_free_client_credentials
(gnutls anon client credentials t sc)

sc: is an gnutls_anon_client_credentials_t structure.
This structure is complex enough to manipulate directly thus this helper function is
provided in order to free (deallocate) it.

[Function]void gnutls_anon_free_server_credentials
(gnutls anon server credentials t sc)

sc: is an gnutls_anon_server_credentials_t structure.
This structure is complex enough to manipulate directly thus this helper function is
provided in order to free (deallocate) it.

[Function]void gnutls_anon_set_params_function
(gnutls anon server credentials t res, gnutls params function * func)

res: is a gnutls certificate credentials t structure
func: is the function to be called
This function will set a callback in order for the server to get the diffie hellman
parameters for anonymous authentication. The callback should return zero on success.

[Function]void gnutls_anon_set_server_dh_params
(gnutls anon server credentials t res, gnutls dh params t dh_params)

res: is a gnutls anon server credentials t structure
dh params: is a structure that holds diffie hellman parameters.
This function will set the diffie hellman parameters for an anonymous server to use.
These parameters will be used in Anonymous Diffie Hellman cipher suites.

[Function]gnutls_credentials_type_t gnutls_auth_client_get_type
(gnutls session t session)

session: is a gnutls_session_t structure.
Returns the type of credentials that were used for client authentication. The returned
information is to be used to distinguish the function used to access authentication
data.

[Function]gnutls_credentials_type_t gnutls_auth_get_type
(gnutls session t session)

session: is a gnutls_session_t structure.
Returns type of credentials for the current authentication schema. The returned
information is to be used to distinguish the function used to access authentication
data.
Eg. for CERTIFICATE ciphersuites (key exchange algorithms: KX RSA,
KX DHE RSA), the same function are to be used to access the authentication data.

[Function]gnutls_credentials_type_t gnutls_auth_server_get_type
(gnutls session t session)

session: is a gnutls_session_t structure.
Returns the type of credentials that were used for server authentication. The returned
information is to be used to distinguish the function used to access authentication
data.

Chapter 9: Function reference 78

[Function]int gnutls_bye (gnutls session t session, gnutls close request t how)
session: is a gnutls_session_t structure.
how : is an integer
Terminates the current TLS/SSL connection. The connection should have been ini-
tiated using gnutls_handshake(). how should be one of GNUTLS SHUT RDWR,
GNUTLS SHUT WR.
In case of GNUTLS SHUT RDWR then the TLS connection gets terminated and fur-
ther receives and sends will be disallowed. If the return value is zero you may continue
using the connection. GNUTLS SHUT RDWR actually sends an alert containing a
close request and waits for the peer to reply with the same message.
In case of GNUTLS SHUT WR then the TLS connection gets terminated and further
sends will be disallowed. In order to reuse the connection you should wait for an EOF
from the peer. GNUTLS SHUT WR sends an alert containing a close request.
This function may also return GNUTLS E AGAIN or GNUTLS E INTERRUPTED;
cf. gnutls_record_get_direction().

[Function]time_t gnutls_certificate_activation_time_peers
(gnutls session t session)

session: is a gnutls session
This function will return the peer’s certificate activation time. This is the creation
time for openpgp keys.
Returns (time t) -1 on error.

[Function]int gnutls_certificate_allocate_credentials
(gnutls certificate credentials t* res)

res: is a pointer to an gnutls_certificate_credentials_t structure.
This structure is complex enough to manipulate directly thus this helper function is
provided in order to allocate it.
Returns 0 on success.

[Function]int gnutls_certificate_client_get_request_status
(gnutls session t session)

session: is a gnutls session
This function will return 0 if the peer (server) did not request client authentication
or 1 otherwise. Returns a negative value in case of an error.

[Function]void gnutls_certificate_client_set_retrieve_function
(gnutls certificate credentials t cred, gnutls certificate client retrieve function
* func)

cred: is a gnutls_certificate_credentials_t structure.
func: is the callback function
This function sets a callback to be called in order to retrieve the certificate
to be used in the handshake. The callback’s function prototype is: int
(*callback)(gnutls session t, const gnutls datum t* req ca dn, int nreqs,
gnutls pk algorithm t* pk algos, int pk algos length, gnutls retr st* st);

Chapter 9: Function reference 79

st should contain the certificates and private keys.

req_ca_cert, is only used in X.509 certificates. Contains a list with the CA names
that the server considers trusted. Normally we should send a certificate that is signed
by one of these CAs. These names are DER encoded. To get a more meaningful value
use the function gnutls_x509_rdn_get().

pk_algos, contains a list with server’s acceptable signature algorithms. The certifi-
cate returned should support the server’s given algorithms.

If the callback function is provided then gnutls will call it, in the handshake, after
the certificate request message has been received.

The callback function should set the certificate list to be sent, and return 0 on success.
If no certificate was selected then the number of certificates should be set to zero.
The value (-1) indicates error and the handshake will be terminated.

[Function]time_t gnutls_certificate_expiration_time_peers
(gnutls session t session)

session: is a gnutls session

This function will return the peer’s certificate expiration time.

Returns (time t) -1 on error.

[Function]void gnutls_certificate_free_ca_names
(gnutls certificate credentials t sc)

sc: is an gnutls_certificate_credentials_t structure.

This function will delete all the CA name in the given credentials. Clients may call
this to save some memory since in client side the CA names are not used.

CA names are used by servers to advertize the CAs they support to clients.

[Function]void gnutls_certificate_free_cas (gnutls certificate credentials t
sc)

sc: is an gnutls_certificate_credentials_t structure.

This function will delete all the CAs associated with the given credentials. Servers
that do not use gnutls_certificate_verify_peers2() may call this to save some
memory.

[Function]void gnutls_certificate_free_credentials
(gnutls certificate credentials t sc)

sc: is an gnutls_certificate_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to free (deallocate) it.

This function does not free any temporary parameters associated with this structure
(ie RSA and DH parameters are not freed by this function).

[Function]void gnutls_certificate_free_crls (gnutls certificate credentials t
sc)

sc: is an gnutls_certificate_credentials_t structure.

This function will delete all the CRLs associated with the given credentials.

Chapter 9: Function reference 80

[Function]void gnutls_certificate_free_keys (gnutls certificate credentials t
sc)

sc: is an gnutls_certificate_credentials_t structure.

This function will delete all the keys and the certificates associated with the given
credentials. This function must not be called when a TLS negotiation that uses the
credentials is in progress.

[Function]const gnutls_datum_t * gnutls_certificate_get_ours
(gnutls session t session)

session: is a gnutls session

This function will return the certificate as sent to the peer, in the last handshake.
These certificates are in raw format. In X.509 this is a certificate list. In OpenPGP
this is a single certificate. Returns NULL in case of an error, or if no certificate was
used.

[Function]const gnutls_datum_t * gnutls_certificate_get_peers
(gnutls session t session, unsigned int * list_size)

session: is a gnutls session

list size: is the length of the certificate list

This function will return the peer’s raw certificate (chain) as sent by the peer. These
certificates are in raw format (DER encoded for X.509). In case of a X.509 then a
certificate list may be present. The first certificate in the list is the peer’s certificate,
following the issuer’s certificate, then the issuer’s issuer etc.

In case of OpenPGP keys a single key will be returned in raw format.

Returns NULL in case of an error, or if no certificate was sent.

[Function]void gnutls_certificate_send_x509_rdn_sequence
(gnutls session t session, int status)

session: is a pointer to a gnutls_session_t structure.

status: is 0 or 1

If status is non zero, this function will order gnutls not to send the rdnSequence in
the certificate request message. That is the server will not advertize it’s trusted CAs
to the peer. If status is zero then the default behaviour will take effect, which is to
advertize the server’s trusted CAs.

This function has no effect in clients, and in authentication methods other than
certificate with X.509 certificates.

[Function]void gnutls_certificate_server_set_request (gnutls session t
session, gnutls certificate request t req)

session: is an gnutls_session_t structure.

req: is one of GNUTLS CERT REQUEST, GNUTLS CERT REQUIRE

This function specifies if we (in case of a server) are going to send a certificate request
message to the client. If req is GNUTLS CERT REQUIRE then the server will
return an error if the peer does not provide a certificate. If you do not call this
function then the client will not be asked to send a certificate.

Chapter 9: Function reference 81

[Function]void gnutls_certificate_server_set_retrieve_function
(gnutls certificate credentials t cred, gnutls certificate server retrieve function
* func)

cred: is a gnutls_certificate_credentials_t structure.

func: is the callback function

This function sets a callback to be called in order to retrieve the certificate
to be used in the handshake. The callback’s function prototype is: int
(*callback)(gnutls session t, gnutls retr st* st);

st should contain the certificates and private keys.

If the callback function is provided then gnutls will call it, in the handshake, after
the certificate request message has been received.

The callback function should set the certificate list to be sent, and return 0 on success.
The value (-1) indicates error and the handshake will be terminated.

[Function]void gnutls_certificate_set_dh_params
(gnutls certificate credentials t res, gnutls dh params t dh_params)

res: is a gnutls certificate credentials t structure

dh params: is a structure that holds diffie hellman parameters.

This function will set the diffie hellman parameters for a certificate server to use.
These parameters will be used in Ephemeral Diffie Hellman cipher suites.

[Function]void gnutls_certificate_set_params_function
(gnutls certificate credentials t res, gnutls params function * func)

res: is a gnutls certificate credentials t structure

func: is the function to be called

This function will set a callback in order for the server to get the diffie hellman or
RSA parameters for certificate authentication. The callback should return zero on
success.

[Function]void gnutls_certificate_set_rsa_export_params
(gnutls certificate credentials t res, gnutls rsa params t rsa_params)

res: is a gnutls certificate credentials t structure

rsa params: is a structure that holds temporary RSA parameters.

This function will set the temporary RSA parameters for a certificate server to use.
These parameters will be used in RSA-EXPORT cipher suites.

[Function]void gnutls_certificate_set_verify_flags
(gnutls certificate credentials t res, unsigned int flags)

res: is a gnutls certificate credentials t structure

flags: are the flagsis a structure that holds diffie hellman parameters.

This function will set the flags to be used at verification of the certificates. Flags
must be OR of the gnutls certificate verify flags enumerations.

Chapter 9: Function reference 82

[Function]void gnutls_certificate_set_verify_limits
(gnutls certificate credentials t res, unsigned int max_bits, unsigned int
max_depth)

res: is a gnutls certificate credentials structure
max bits: is the number of bits of an acceptable certificate (default 8200)
max depth: is maximum depth of the verification of a certificate chain (default 5)
This function will set some upper limits for the default verification function (gnutls_
certificate_verify_peers()) to avoid denial of service attacks.

[Function]int gnutls_certificate_set_x509_crl_file
(gnutls certificate credentials t res, const char * crlfile,
gnutls x509 crt fmt t type)

res: is an gnutls_certificate_credentials_t structure.
crlfile: is a file containing the list of verified CRLs (DER or PEM list)
type: is PEM or DER
This function adds the trusted CRLs in order to verify client or server certificates. In
case of a client this is not required to be called if the certificates are not verified using
gnutls_certificate_verify_peers(). This function may be called multiple times.
Returns the number of CRLs processed or a negative value on error.

[Function]int gnutls_certificate_set_x509_crl_mem
(gnutls certificate credentials t res, const gnutls datum t * CRL,
gnutls x509 crt fmt t type)

res: is an gnutls_certificate_credentials_t structure.
CRL: is a list of trusted CRLs. They should have been verified before.
type: is DER or PEM
This function adds the trusted CRLs in order to verify client or server certificates. In
case of a client this is not required to be called if the certificates are not verified using
gnutls_certificate_verify_peers(). This function may be called multiple times.
Returns the number of CRLs processed or a negative value on error.

[Function]int gnutls_certificate_set_x509_crl
(gnutls certificate credentials t res, gnutls x509 crl t * crl_list, int
crl_list_size)

res: is an gnutls_certificate_credentials_t structure.
crl list: is a list of trusted CRLs. They should have been verified before.
crl list size: holds the size of the crl list
This function adds the trusted CRLs in order to verify client or server certificates. In
case of a client this is not required to be called if the certificates are not verified using
gnutls_certificate_verify_peers(). This function may be called multiple times.
Returns 0 on success.

[Function]int gnutls_certificate_set_x509_key_file
(gnutls certificate credentials t res, const char * CERTFILE, const char *
KEYFILE, gnutls x509 crt fmt t type)

res: is an gnutls_certificate_credentials_t structure.

Chapter 9: Function reference 83

CERTFILE: is a file that containing the certificate list (path) for the specified private
key, in PKCS7 format, or a list of certificates
KEYFILE: is a file that contains the private key
type: is PEM or DER
This function sets a certificate/private key pair in the gnutls certificate credentials t
structure. This function may be called more than once (in case multiple
keys/certificates exist for the server).
Currently only PKCS-1 encoded RSA and DSA private keys are accepted by this
function.

[Function]int gnutls_certificate_set_x509_key_mem
(gnutls certificate credentials t res, const gnutls datum t * cert, const
gnutls datum t * key, gnutls x509 crt fmt t type)

res: is an gnutls_certificate_credentials_t structure.
cert: contains a certificate list (path) for the specified private key
key : is the private key
type: is PEM or DER
This function sets a certificate/private key pair in the gnutls certificate credentials t
structure. This function may be called more than once (in case multiple
keys/certificates exist for the server).
Currently are supported: RSA PKCS-1 encoded private keys, DSA private keys.
DSA private keys are encoded the OpenSSL way, which is an ASN.1 DER sequence
of 6 INTEGERs - version, p, q, g, pub, priv.
Note that the keyUsage (2.5.29.15) PKIX extension in X.509 certificates is supported.
This means that certificates intended for signing cannot be used for ciphersuites that
require encryption.
If the certificate and the private key are given in PEM encoding then the strings that
hold their values must be null terminated.

[Function]int gnutls_certificate_set_x509_key
(gnutls certificate credentials t res, gnutls x509 crt t * cert_list, int
cert_list_size, gnutls x509 privkey t key)

res: is an gnutls_certificate_credentials_t structure.
cert list: contains a certificate list (path) for the specified private key
cert list size: holds the size of the certificate list
key : is a gnutls x509 privkey t key
This function sets a certificate/private key pair in the gnutls certificate credentials t
structure. This function may be called more than once (in case multiple
keys/certificates exist for the server).

[Function]int gnutls_certificate_set_x509_trust_file
(gnutls certificate credentials t res, const char * cafile,
gnutls x509 crt fmt t type)

res: is an gnutls_certificate_credentials_t structure.

Chapter 9: Function reference 84

cafile: is a file containing the list of trusted CAs (DER or PEM list)
type: is PEM or DER
This function adds the trusted CAs in order to verify client or server certificates. In
case of a client this is not required to be called if the certificates are not verified using
gnutls_certificate_verify_peers(). This function may be called multiple times.
In case of a server the CAs set here will be sent to the client if a certificate request is
sent. This can be disabled using gnutls_certificate_send_x509_rdn_sequence().
Returns the number of certificates processed or a negative value on error.

[Function]int gnutls_certificate_set_x509_trust_mem
(gnutls certificate credentials t res, const gnutls datum t * ca,
gnutls x509 crt fmt t type)

res: is an gnutls_certificate_credentials_t structure.
ca: is a list of trusted CAs or a DER certificate
type: is DER or PEM
This function adds the trusted CAs in order to verify client or server certificates. In
case of a client this is not required to be called if the certificates are not verified using
gnutls_certificate_verify_peers(). This function may be called multiple times.
In case of a server the CAs set here will be sent to the client if a certificate request is
sent. This can be disabled using gnutls_certificate_send_x509_rdn_sequence().
Returns the number of certificates processed or a negative value on error.

[Function]int gnutls_certificate_set_x509_trust
(gnutls certificate credentials t res, gnutls x509 crt t * ca_list, int
ca_list_size)

res: is an gnutls_certificate_credentials_t structure.
ca list: is a list of trusted CAs
ca list size: holds the size of the CA list
This function adds the trusted CAs in order to verify client or server certificates. In
case of a client this is not required to be called if the certificates are not verified using
gnutls_certificate_verify_peers(). This function may be called multiple times.
In case of a server the CAs set here will be sent to the client if a certificate request is
sent. This can be disabled using gnutls_certificate_send_x509_rdn_sequence().
Returns 0 on success.

[Function]const char * gnutls_certificate_type_get_name
(gnutls certificate type t type)

type: is a certificate type
Returns a string (or NULL) that contains the name of the specified certificate type.

[Function]gnutls_certificate_type_t gnutls_certificate_type_get
(gnutls session t session)

session: is a gnutls_session_t structure.
Returns the currently used certificate type. The certificate type is by default X.509,
unless it is negotiated as a TLS extension.

Chapter 9: Function reference 85

[Function]int gnutls_certificate_type_set_priority (gnutls session t
session, const int * list)

session: is a gnutls_session_t structure.

list: is a 0 terminated list of gnutls certificate type t elements.

Sets the priority on the certificate types supported by gnutls. Priority is higher for
types specified before others. After specifying the types you want, you must append
a 0. Note that the certificate type priority is set on the client. The server does not
use the cert type priority except for disabling types that were not specified.

[Function]int gnutls_certificate_verify_peers2 (gnutls session t session,
unsigned int * status)

session: is a gnutls session

status: is the output of the verification

This function will try to verify the peer’s certificate and return its status
(trusted, invalid etc.). The value of status should be one or more of the
gnutls certificate status t enumerated elements bitwise or’d. To avoid denial of
service attacks some default upper limits regarding the certificate key size and chain
size are set. To override them use gnutls_certificate_set_verify_limits().

Note that you must also check the peer’s name in order to check if the verified cer-
tificate belongs to the actual peer.

Returns a negative error code on error and zero on success.

This is the same as gnutls_x509_verify_certificate() and uses the loaded CAs
in the credentials as trusted CAs.

[Function]const char * gnutls_check_version (const char * req_version)
req version: the version to check

Check that the version of the library is at minimum the requested one and return the
version string; return NULL if the condition is not satisfied. If a NULL is passed to
this function, no check is done, but the version string is simply returned.

[Function]size_t gnutls_cipher_get_key_size (gnutls cipher algorithm t
algorithm)

algorithm: is an encryption algorithm

Returns the length (in bytes) of the given cipher’s key size. Returns 0 if the given
cipher is invalid.

[Function]const char * gnutls_cipher_get_name (gnutls cipher algorithm t
algorithm)

algorithm: is an encryption algorithm

Returns a pointer to a string that contains the name of the specified cipher or NULL.

[Function]gnutls_cipher_algorithm_t gnutls_cipher_get (gnutls session t
session)

session: is a gnutls_session_t structure.

Returns the currently used cipher.

Chapter 9: Function reference 86

[Function]int gnutls_cipher_set_priority (gnutls session t session, const
int * list)

session: is a gnutls_session_t structure.

list: is a 0 terminated list of gnutls cipher algorithm t elements.

Sets the priority on the ciphers supported by gnutls. Priority is higher for ciphers
specified before others. After specifying the ciphers you want, you must append a 0.
Note that the priority is set on the client. The server does not use the algorithm’s
priority except for disabling algorithms that were not specified.

[Function]const char * gnutls_cipher_suite_get_name
(gnutls kx algorithm t kx_algorithm, gnutls cipher algorithm t
cipher_algorithm, gnutls mac algorithm t mac_algorithm)

kx algorithm: is a Key exchange algorithm

cipher algorithm: is a cipher algorithm

mac algorithm: is a MAC algorithm

Returns a string that contains the name of a TLS cipher suite, specified by the given
algorithms, or NULL.

Note that the full cipher suite name must be prepended by TLS or SSL depending of
the protocol in use.

[Function]const char * gnutls_compression_get_name
(gnutls compression method t algorithm)

algorithm: is a Compression algorithm

Returns a pointer to a string that contains the name of the specified compression
algorithm or NULL.

[Function]gnutls_compression_method_t gnutls_compression_get
(gnutls session t session)

session: is a gnutls_session_t structure.

Returns the currently used compression method.

[Function]int gnutls_compression_set_priority (gnutls session t session,
const int * list)

session: is a gnutls_session_t structure.

list: is a 0 terminated list of gnutls compression method t elements.

Sets the priority on the compression algorithms supported by gnutls. Priority is higher
for algorithms specified before others. After specifying the algorithms you want, you
must append a 0. Note that the priority is set on the client. The server does not use
the algorithm’s priority except for disabling algorithms that were not specified.

TLS 1.0 does not define any compression algorithms except NULL. Other compression
algorithms are to be considered as gnutls extensions.

[Function]void gnutls_credentials_clear (gnutls session t session)
session: is a gnutls_session_t structure.

Clears all the credentials previously set in this session.

Chapter 9: Function reference 87

[Function]int gnutls_credentials_set (gnutls session t session,
gnutls credentials type t type, void * cred)

session: is a gnutls_session_t structure.

type: is the type of the credentials

cred: is a pointer to a structure.

Sets the needed credentials for the specified type. Eg username, password - or public
and private keys etc. The (void* cred) parameter is a structure that depends on the
specified type and on the current session (client or server). [In order to minimize
memory usage, and share credentials between several threads gnutls keeps a pointer
to cred, and not the whole cred structure. Thus you will have to keep the structure
allocated until you call gnutls_deinit().]

For GNUTLS CRD ANON cred should be gnutls anon client credentials t in case
of a client. In case of a server it should be gnutls anon server credentials t.

For GNUTLS CRD SRP cred should be gnutls srp client credentials t in case of a
client, and gnutls srp server credentials t, in case of a server.

For GNUTLS CRD CERTIFICATE cred should be gnutls certificate credentials t.

[Function]int gnutls_db_check_entry (gnutls session t session,
gnutls datum t session_entry)

session: is a gnutls_session_t structure.

session entry : is the session data (not key)

This function returns GNUTLS E EXPIRED, if the database entry has expired or
0 otherwise. This function is to be used when you want to clear unnesessary session
which occupy space in your backend.

[Function]void * gnutls_db_get_ptr (gnutls session t session)
session: is a gnutls_session_t structure.

Returns the pointer that will be sent to db store, retrieve and delete functions, as the
first argument.

[Function]void gnutls_db_remove_session (gnutls session t session)
session: is a gnutls_session_t structure.

This function will remove the current session data from the session database. This
will prevent future handshakes reusing these session data. This function should be
called if a session was terminated abnormally, and before gnutls_deinit() is called.

Normally gnutls_deinit() will remove abnormally terminated sessions.

[Function]void gnutls_db_set_cache_expiration (gnutls session t session,
int seconds)

session: is a gnutls_session_t structure.

seconds: is the number of seconds.

Sets the expiration time for resumed sessions. The default is 3600 (one hour) at the
time writing this.

Chapter 9: Function reference 88

[Function]void gnutls_db_set_ptr (gnutls session t session, void * ptr)
session: is a gnutls_session_t structure.
ptr: is the pointer
Sets the pointer that will be provided to db store, retrieve and delete functions, as
the first argument.

[Function]void gnutls_db_set_remove_function (gnutls session t session,
gnutls db remove func rem_func)

session: is a gnutls_session_t structure.
rem func: is the function.
Sets the function that will be used to remove data from the resumed sessions database.
This function must return 0 on success.
The first argument to rem_function() will be null unless gnutls_db_set_ptr() has
been called.

[Function]void gnutls_db_set_retrieve_function (gnutls session t session,
gnutls db retr func retr_func)

session: is a gnutls_session_t structure.
retr func: is the function.
Sets the function that will be used to retrieve data from the resumed sessions database.
This function must return a gnutls datum t containing the data on success, or a
gnutls datum t containing null and 0 on failure.
The datum’s data must be allocated using the function gnutls_malloc().
The first argument to store_function() will be null unless gnutls_db_set_ptr()
has been called.

[Function]void gnutls_db_set_store_function (gnutls session t session,
gnutls db store func store_func)

session: is a gnutls_session_t structure.
store func: is the function
Sets the function that will be used to store data from the resumed sessions database.
This function must remove 0 on success.
The first argument to store_function() will be null unless gnutls_db_set_ptr()
has been called.

[Function]void gnutls_deinit (gnutls session t session)
session: is a gnutls_session_t structure.
This function clears all buffers associated with the session. This function will also
remove session data from the session database if the session was terminated abnor-
mally.

[Function]int gnutls_dh_get_group (gnutls session t session, gnutls datum t *
raw_gen, gnutls datum t * raw_prime)

session: is a gnutls session
raw gen: will hold the generator.

Chapter 9: Function reference 89

raw prime: will hold the prime.

This function will return the group parameters used in the last Diffie Hellman authen-
tication with the peer. These are the prime and the generator used. This function
should be used for both anonymous and ephemeral diffie Hellman. The output pa-
rameters must be freed with gnutls_free().

Returns a negative value in case of an error.

[Function]int gnutls_dh_get_peers_public_bits (gnutls session t session)
session: is a gnutls session

This function will return the bits used in the last Diffie Hellman authentication with
the peer. Should be used for both anonymous and ephemeral diffie Hellman. Returns
a negative value in case of an error.

[Function]int gnutls_dh_get_prime_bits (gnutls session t session)
session: is a gnutls session

This function will return the bits of the prime used in the last Diffie Hellman au-
thentication with the peer. Should be used for both anonymous and ephemeral diffie
Hellman. Returns a negative value in case of an error.

[Function]int gnutls_dh_get_pubkey (gnutls session t session, gnutls datum t
* raw_key)

session: is a gnutls session

raw key : will hold the public key.

This function will return the peer’s public key used in the last Diffie Hellman au-
thentication. This function should be used for both anonymous and ephemeral diffie
Hellman. The output parameters must be freed with gnutls_free().

Returns a negative value in case of an error.

[Function]int gnutls_dh_get_secret_bits (gnutls session t session)
session: is a gnutls session

This function will return the bits used in the last Diffie Hellman authentication with
the peer. Should be used for both anonymous and ephemeral diffie Hellman. Returns
a negative value in case of an error.

[Function]int gnutls_dh_params_cpy (gnutls dh params t dst,
gnutls dh params t src)

dst: Is the destination structure, which should be initialized.

src: Is the source structure

This function will copy the DH parameters structure from source to destination.

[Function]void gnutls_dh_params_deinit (gnutls dh params t dh_params)
dh params: Is a structure that holds the prime numbers

This function will deinitialize the DH parameters structure.

Chapter 9: Function reference 90

[Function]int gnutls_dh_params_export_pkcs3 (gnutls dh params t params,
gnutls x509 crt fmt t format, unsigned char * params_data, size t *
params_data_size)

params: Holds the DH parameters
format: the format of output params. One of PEM or DER.
params data: will contain a PKCS3 DHParams structure PEM or DER encoded
params data size: holds the size of params data (and will be replaced by the actual
size of parameters)
This function will export the given dh parameters to a PKCS3 DHParams structure.
This is the format generated by "openssl dhparam" tool. If the buffer provided is
not long enough to hold the output, then GNUTLS E SHORT MEMORY BUFFER
will be returned.
If the structure is PEM encoded, it will have a header of "BEGIN DH PARAME-
TERS".
In case of failure a negative value will be returned, and 0 on success.

[Function]int gnutls_dh_params_export_raw (gnutls dh params t params,
gnutls datum t * prime, gnutls datum t * generator, unsigned int * bits)

params: Holds the DH parameters
prime: will hold the new prime
generator: will hold the new generator
bits: if non null will hold is the prime’s number of bits
This function will export the pair of prime and generator for use in the Diffie-Hellman
key exchange. The new parameters will be allocated using gnutls_malloc() and will
be stored in the appropriate datum.

[Function]int gnutls_dh_params_generate2 (gnutls dh params t params,
unsigned int bits)

params: Is the structure that the DH parameters will be stored
bits: is the prime’s number of bits
This function will generate a new pair of prime and generator for use in the Diffie-
Hellman key exchange. The new parameters will be allocated using gnutls_malloc()
and will be stored in the appropriate datum. This function is normally slow.
Note that the bits value should be one of 768, 1024, 2048, 3072 or 4096. Also note
that the DH parameters are only useful to servers. Since clients use the parameters
sent by the server, it’s of no use to call this in client side.

[Function]int gnutls_dh_params_import_pkcs3 (gnutls dh params t params,
const gnutls datum t * pkcs3_params, gnutls x509 crt fmt t format)

params: A structure where the parameters will be copied to
pkcs3 params: should contain a PKCS3 DHParams structure PEM or DER encoded
format: the format of params. PEM or DER.
This function will extract the DHParams found in a PKCS3 formatted structure.
This is the format generated by "openssl dhparam" tool.

Chapter 9: Function reference 91

If the structure is PEM encoded, it should have a header of "BEGIN DH PARAME-
TERS".
In case of failure a negative value will be returned, and 0 on success.

[Function]int gnutls_dh_params_import_raw (gnutls dh params t dh_params,
const gnutls datum t * prime, const gnutls datum t * generator)

dh params: Is a structure that will hold the prime numbers
prime: holds the new prime
generator: holds the new generator
This function will replace the pair of prime and generator for use in the Diffie-Hellman
key exchange. The new parameters should be stored in the appropriate gnutls datum.

[Function]int gnutls_dh_params_init (gnutls dh params t * dh_params)
dh params: Is a structure that will hold the prime numbers
This function will initialize the DH parameters structure.

[Function]void gnutls_dh_set_prime_bits (gnutls session t session, unsigned
int bits)

session: is a gnutls_session_t structure.
bits: is the number of bits
This function sets the number of bits, for use in an Diffie Hellman key exchange. This
is used both in DH ephemeral and DH anonymous cipher suites. This will set the
minimum size of the prime that will be used for the handshake.
In the client side it sets the minimum accepted number of bits. If a server sends a
prime with less bits than that GNUTLS E DH PRIME UNACCEPTABLE will be
returned by the handshake.

[Function]int gnutls_error_is_fatal (int error)
error: is an error returned by a gnutls function. Error should be a negative value.
If a function returns a negative value you may feed that value to this function to see
if it is fatal. Returns 1 for a fatal error 0 otherwise. However you may want to check
the error code manually, since some non-fatal errors to the protocol may be fatal for
you (your program).
This is only useful if you are dealing with errors from the record layer or the handshake
layer.

[Function]int gnutls_error_to_alert (int err, int * level)
err: is a negative integer
level: the alert level will be stored there
Returns an alert depending on the error code returned by a gnutls function. All
alerts sent by this function should be considered fatal. The only exception is when
err == GNUTLS E REHANDSHAKE, where a warning alert should be sent to the
peer indicating that no renegotiation will be performed.
If the return value is GNUTLS E INVALID REQUEST, then there was no mapping
to an alert.

Chapter 9: Function reference 92

[Function]int gnutls_fingerprint (gnutls digest algorithm t algo, const
gnutls datum t * data, void * result, size t * result_size)

algo: is a digest algorithm
data: is the data
result: is the place where the result will be copied (may be null).
result size: should hold the size of the result. The actual size of the returned result
will also be copied there.
This function will calculate a fingerprint (actually a hash), of the given data. The
result is not printable data. You should convert it to hex, or to something else
printable.
This is the usual way to calculate a fingerprint of an X.509 DER encoded certificate.
Note however that the fingerprint of an OpenPGP is not just a hash and cannot be
calculated with this function.
Returns a negative value in case of an error.

[Function]void gnutls_free (void * ptr)
This function will free data pointed by ptr.
The deallocation function used is the one set by gnutls_global_set_mem_
functions().

[Function]void gnutls_global_deinit (void)
This function deinitializes the global data, that were initialized using gnutls_global_
init().

[Function]int gnutls_global_init (void)
This function initializes the global data to defaults. Every gnutls application has a
global data which holds common parameters shared by gnutls session structures. You
must call gnutls_global_deinit() when gnutls usage is no longer needed Returns
zero on success.
Note that this function will also initialize libgcrypt, if it has not been initialized
before. Thus if you want to manually initialize libgcrypt you must do it before calling
this function. This is useful in cases you want to disable libgcrypt’s internal lockings
etc.

[Function]void gnutls_global_set_log_function (gnutls log func log_func)
log func: it’s a log function
This is the function where you set the logging function gnutls is going to use. This
function only accepts a character array. Normally you may not use this function since
it is only used for debugging purposes.
gnutls log func is of the form, void (*gnutls log func)(int level, const char*);

[Function]void gnutls_global_set_log_level (int level)
level: it’s an integer from 0 to 9.
This is the function that allows you to set the log level. The level is an integer between
0 and 9. Higher values mean more verbosity. The default value is 0. Larger values
should only be used with care, since they may reveal sensitive information.
Use a log level over 10 to enable all debugging options.

Chapter 9: Function reference 93

[Function]void gnutls_global_set_mem_functions (gnutls alloc function
gnutls_alloc_func, gnutls alloc function gnutls_secure_alloc_func,
gnutls is secure function gnutls_is_secure_func, gnutls realloc function
gnutls_realloc_func, gnutls free function gnutls_free_func)

This is the function were you set the memory allocation functions gnutls is going
to use. By default the libc’s allocation functions (malloc(), free()), are used by
gnutls, to allocate both sensitive and not sensitive data. This function is provided
to set the memory allocation functions to something other than the defaults (ie the
gcrypt allocation functions).
This function must be called before gnutls_global_init() is called.

[Function]gnutls_handshake_description_t
gnutls_handshake_get_last_in (gnutls session t session)

session: is a gnutls_session_t structure.
Returns the last handshake message received. This function is only useful to check
where the last performed handshake failed. If the previous handshake succeed or was
not performed at all then no meaningful value will be returned.
Check gnutls.h for the available handshake descriptions.

[Function]gnutls_handshake_description_t
gnutls_handshake_get_last_out (gnutls session t session)

session: is a gnutls_session_t structure.
Returns the last handshake message sent. This function is only useful to check where
the last performed handshake failed. If the previous handshake succeed or was not
performed at all then no meaningful value will be returned.
Check gnutls.h for the available handshake descriptions.

[Function]void gnutls_handshake_set_max_packet_length (gnutls session t
session, int max)

session: is a gnutls_session_t structure.
max: is the maximum number.
This function will set the maximum size of a handshake message. Handshake messages
over this size are rejected. The default value is 16kb which is large enough. Set this
to 0 if you do not want to set an upper limit.

[Function]void gnutls_handshake_set_private_extensions (gnutls session t
session, int allow)

session: is a gnutls_session_t structure.
allow : is an integer (0 or 1)
This function will enable or disable the use of private cipher suites (the ones that start
with 0xFF). By default or if allow is 0 then these cipher suites will not be advertized
nor used.
Unless this function is called with the option to allow (1), then no compression algo-
rithms, like LZO. That is because these algorithms are not yet defined in any RFC
or even internet draft.
Enabling the private ciphersuites when talking to other than gnutls servers and clients
may cause interoperability problems.

Chapter 9: Function reference 94

[Function]int gnutls_handshake (gnutls session t session)
session: is a gnutls_session_t structure.

This function does the handshake of the TLS/SSL protocol, and initializes the TLS
connection.

This function will fail if any problem is encountered, and will return a negative error
code. In case of a client, if the client has asked to resume a session, but the server
couldn’t, then a full handshake will be performed.

The non-fatal errors such as GNUTLS E AGAIN and GNUTLS E INTERRUPTED
interrupt the handshake procedure, which should be later be resumed. Call this
function again, until it returns 0; cf. gnutls_record_get_direction() and gnutls_
error_is_fatal().

If this function is called by a server after a rehandshake request then
GNUTLS E GOT APPLICATION DATA or GNUTLS E WARNING ALERT RECEIVED
may be returned. Note that these are non fatal errors, only in the specific case of a
rehandshake. Their meaning is that the client rejected the rehandshake request.

[Function]int gnutls_init (gnutls session t * session, gnutls connection end t
con_end)

session: is a pointer to a gnutls_session_t structure.

con end: is used to indicate if this session is to be used for server or client. Can be
one of GNUTLS CLIENT and GNUTLS SERVER.

This function initializes the current session to null. Every session must be initialized
before use, so internal structures can be allocated. This function allocates structures
which can only be free’d by calling gnutls_deinit(). Returns zero on success.

[Function]const char * gnutls_kx_get_name (gnutls kx algorithm t
algorithm)

algorithm: is a key exchange algorithm

Returns a pointer to a string that contains the name of the specified key exchange
algorithm or NULL.

[Function]gnutls_kx_algorithm_t gnutls_kx_get (gnutls session t session)
session: is a gnutls_session_t structure.

Returns the key exchange algorithm used in the last handshake.

[Function]int gnutls_kx_set_priority (gnutls session t session, const int *
list)

session: is a gnutls_session_t structure.

list: is a 0 terminated list of gnutls kx algorithm t elements.

Sets the priority on the key exchange algorithms supported by gnutls. Priority is
higher for algorithms specified before others. After specifying the algorithms you
want, you must append a 0. Note that the priority is set on the client. The server
does not use the algorithm’s priority except for disabling algorithms that were not
specified.

Chapter 9: Function reference 95

[Function]const char * gnutls_mac_get_name (gnutls mac algorithm t
algorithm)

algorithm: is a MAC algorithm
Returns a string that contains the name of the specified MAC algorithm or NULL.

[Function]gnutls_mac_algorithm_t gnutls_mac_get (gnutls session t
session)

session: is a gnutls_session_t structure.
Returns the currently used mac algorithm.

[Function]int gnutls_mac_set_priority (gnutls session t session, const int *
list)

session: is a gnutls_session_t structure.
list: is a 0 terminated list of gnutls mac algorithm t elements.
Sets the priority on the mac algorithms supported by gnutls. Priority is higher for
algorithms specified before others. After specifying the algorithms you want, you
must append a 0. Note that the priority is set on the client. The server does not use
the algorithm’s priority except for disabling algorithms that were not specified.

[Function]void * gnutls_malloc (size t s)
This function will allocate ’s’ bytes data, and return a pointer to memory. This
function is supposed to be used by callbacks.
The allocation function used is the one set by gnutls_global_set_mem_functions().

[Function]void gnutls_openpgp_send_key (gnutls session t session,
gnutls openpgp key status t status)

session: is a pointer to a gnutls_session_t structure.
status: is one of OPENPGP KEY, or OPENPGP KEY FINGERPRINT
This function will order gnutls to send the key fingerprint instead of the key in the
initial handshake procedure. This should be used with care and only when there is
indication or knowledge that the server can obtain the client’s key.

[Function]int gnutls_pem_base64_decode_alloc (const char * header, const
gnutls datum t * b64_data, gnutls datum t * result)

header: The PEM header (eg. CERTIFICATE)
b64 data: contains the encoded data
result: the place where decoded data lie
This function will decode the given encoded data. The decoded data will be allocated,
and stored into result. If the header given is non null this function will search for
"—–BEGIN header" and decode only this part. Otherwise it will decode the first
PEM packet found.
You should use gnutls_free() to free the returned data.

[Function]int gnutls_pem_base64_decode (const char * header, const
gnutls datum t * b64_data, unsigned char * result, size t * result_size)

header: A null terminated string with the PEM header (eg. CERTIFICATE)

Chapter 9: Function reference 96

b64 data: contain the encoded data
result: the place where decoded data will be copied
result size: holds the size of the result
This function will decode the given encoded data. If the header given is non null this
function will search for "—–BEGIN header" and decode only this part. Otherwise it
will decode the first PEM packet found.
Returns GNUTLS E SHORT MEMORY BUFFER if the buffer given is not long
enough, or 0 on success.

[Function]int gnutls_pem_base64_encode_alloc (const char * msg, const
gnutls datum t * data, gnutls datum t * result)

msg : is a message to be put in the encoded header
data: contains the raw data
result: will hold the newly allocated encoded data
This function will convert the given data to printable data, using the base64 encoding.
This is the encoding used in PEM messages. This function will allocate the required
memory to hold the encoded data.
You should use gnutls_free() to free the returned data.

[Function]int gnutls_pem_base64_encode (const char * msg, const
gnutls datum t * data, char * result, size t * result_size)

msg : is a message to be put in the header
data: contain the raw data
result: the place where base64 data will be copied
result size: holds the size of the result
This function will convert the given data to printable data, using the base64 encoding.
This is the encoding used in PEM messages. If the provided buffer is not long enough
GNUTLS E SHORT MEMORY BUFFER is returned.
The output string will be null terminated, although the size will not include the
terminating null.

[Function]void gnutls_perror (int error)
error: is an error returned by a gnutls function. Error is always a negative value.
This function is like perror(). The only difference is that it accepts an error number
returned by a gnutls function.

[Function]const char * gnutls_pk_algorithm_get_name
(gnutls pk algorithm t algorithm)

algorithm: is a pk algorithm
Returns a string that contains the name of the specified public key algorithm or
NULL.

[Function]const char * gnutls_protocol_get_name (gnutls protocol t
version)

version: is a (gnutls) version number
Returns a string that contains the name of the specified TLS version or NULL.

Chapter 9: Function reference 97

[Function]gnutls_protocol_t gnutls_protocol_get_version
(gnutls session t session)

session: is a gnutls_session_t structure.

Returns the version of the currently used protocol.

[Function]int gnutls_protocol_set_priority (gnutls session t session, const
int * list)

session: is a gnutls_session_t structure.

list: is a 0 terminated list of gnutls protocol t elements.

Sets the priority on the protocol versions supported by gnutls. This function actually
enables or disables protocols. Newer protocol versions always have highest priority.

[Function]size_t gnutls_record_check_pending (gnutls session t session)
session: is a gnutls_session_t structure.

This function checks if there are any data to receive in the gnutls buffers. Returns
the size of that data or 0. Notice that you may also use select() to check for data
in a TCP connection, instead of this function. (gnutls leaves some data in the tcp
buffer in order for select to work).

[Function]int gnutls_record_get_direction (gnutls session t session)
session: is a gnutls_session_t structure.

This function provides information about the internals of the record protocol and is
only useful if a prior gnutls function call (e.g. gnutls_handshake()) was interrupted
for some reason, that is, if a function returned GNUTLS E INTERRUPTED or
GNUTLS E AGAIN. In such a case, you might want to call select() or poll() be-
fore calling the interrupted gnutls function again. To tell you whether a file descriptor
should be selected for either reading or writing, gnutls_record_get_direction()
returns 0 if the interrupted function was trying to read data, and 1 if it was trying to
write data.

[Function]size_t gnutls_record_get_max_size (gnutls session t session)
session: is a gnutls_session_t structure.

This function returns the maximum record packet size in this connection. The maxi-
mum record size is negotiated by the client after the first handshake message.

[Function]ssize_t gnutls_record_recv (gnutls session t session, void * data,
size t sizeofdata)

session: is a gnutls_session_t structure.

data: contains the data to send

sizeofdata: is the length of the data

This function has the similar semantics to send(). The only difference is that it
accepts a GNUTLS session.

If the server requests a renegotiation, the client may receive an error code of
GNUTLS E REHANDSHAKE. This message may be simply ignored, replied with
an alert containing NO RENEGOTIATION, or replied with a new handshake.

Chapter 9: Function reference 98

A server may also receive GNUTLS E REHANDSHAKE when a client has initiated
a handshake. In that case the server can only initiate a handshake or terminate the
connection.
Returns the number of bytes received and zero on EOF. A negative error code is
returned in case of an error.

[Function]ssize_t gnutls_record_send (gnutls session t session, const void *
data, size t sizeofdata)

session: is a gnutls_session_t structure.
data: contains the data to send
sizeofdata: is the length of the data
This function has the similar semantics with recv(). The only difference is that is
accepts a GNUTLS session, and uses different error codes.
If the EINTR is returned by the internal push function (the default is recv()) then
GNUTLS E INTERRUPTED will be returned. If GNUTLS E INTERRUPTED or
GNUTLS E AGAIN is returned, you must call this function again, with the same
parameters; cf. gnutls_record_get_direction(). Alternatively you could provide
a NULL pointer for data, and 0 for size. Otherwise the write operation will be
corrupted and the connection will be terminated.
Returns the number of bytes sent, or a negative error code. The number of bytes sent
might be less than sizeofdata. The maximum number of bytes this function can
send in a single call depends on the negotiated maximum record size.

[Function]ssize_t gnutls_record_set_max_size (gnutls session t session,
size t size)

session: is a gnutls_session_t structure.
size: is the new size
This function sets the maximum record packet size in this connection. This property
can only be set to clients. The server may choose not to accept the requested size.
Acceptable values are 512(=2^9), 1024(=2^10), 2048(=2^11) and 4096(=2^12). Re-
turns 0 on success. The requested record size does get in effect immediately only
while sending data. The receive part will take effect after a successful handshake.
This function uses a TLS extension called ’max record size’. Not all TLS implemen-
tations use or even understand this extension.

[Function]int gnutls_rehandshake (gnutls session t session)
session: is a gnutls_session_t structure.
This function will renegotiate security parameters with the client. This should only
be called in case of a server.
This message informs the peer that we want to renegotiate parameters (perform a
handshake).
If this function succeeds (returns 0), you must call the gnutls_handshake() function
in order to negotiate the new parameters.
If the client does not wish to renegotiate parameters he will should with an alert
message, thus the return code will be GNUTLS E WARNING ALERT RECEIVED

Chapter 9: Function reference 99

and the alert will be GNUTLS A NO RENEGOTIATION. A client may also choose
to ignore this message.

[Function]int gnutls_rsa_export_get_modulus_bits (gnutls session t
session)

session: is a gnutls session

This function will return the bits used in the last RSA-EXPORT key exchange with
the peer. Returns a negative value in case of an error.

[Function]int gnutls_rsa_export_get_pubkey (gnutls session t session,
gnutls datum t * exp, gnutls datum t * mod)

session: is a gnutls session

exp: will hold the exponent.

mod: will hold the modulus.

This function will return the peer’s modulus used in the last RSA-EXPORT authen-
tication. The output parameters must be freed with gnutls_free().

Returns a negative value in case of an error.

[Function]int gnutls_rsa_params_cpy (gnutls rsa params t dst,
gnutls rsa params t src)

dst: Is the destination structure, which should be initialized.

src: Is the source structure

This function will copy the RSA parameters structure from source to destination.

[Function]void gnutls_rsa_params_deinit (gnutls rsa params t rsa_params)
rsa params: Is a structure that holds the parameters

This function will deinitialize the RSA parameters structure.

[Function]int gnutls_rsa_params_export_pkcs1 (gnutls rsa params t params,
gnutls x509 crt fmt t format, unsigned char * params_data, size t *
params_data_size)

params: Holds the RSA parameters

format: the format of output params. One of PEM or DER.

params data: will contain a PKCS1 RSAPublicKey structure PEM or DER encoded

params data size: holds the size of params data (and will be replaced by the actual
size of parameters)

This function will export the given RSA parameters to a PKCS1 RSAPublicKey
structure. If the buffer provided is not long enough to hold the output, then
GNUTLS E SHORT MEMORY BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN RSA PRIVATE
KEY".

In case of failure a negative value will be returned, and 0 on success.

Chapter 9: Function reference 100

[Function]int gnutls_rsa_params_export_raw (gnutls rsa params t params,
gnutls datum t * m, gnutls datum t * e, gnutls datum t * d, gnutls datum t *
p, gnutls datum t * q, gnutls datum t * u, unsigned int * bits)

params: a structure that holds the rsa parameters
m: will hold the modulus
e: will hold the public exponent
d: will hold the private exponent
p: will hold the first prime (p)
q: will hold the second prime (q)
u: will hold the coefficient
bits: if non null will hold the prime’s number of bits
This function will export the RSA parameters found in the given structure. The
new parameters will be allocated using gnutls_malloc() and will be stored in the
appropriate datum.

[Function]int gnutls_rsa_params_generate2 (gnutls rsa params t params,
unsigned int bits)

params: The structure where the parameters will be stored
bits: is the prime’s number of bits
This function will generate new temporary RSA parameters for use in RSA-EXPORT
ciphersuites. This function is normally slow.
Note that if the parameters are to be used in export cipher suites the bits value should
be 512 or less. Also note that the generation of new RSA parameters is only useful
to servers. Clients use the parameters sent by the server, thus it’s no use calling this
in client side.

[Function]int gnutls_rsa_params_import_pkcs1 (gnutls rsa params t params,
const gnutls datum t * pkcs1_params, gnutls x509 crt fmt t format)

params: A structure where the parameters will be copied to
pkcs1 params: should contain a PKCS1 RSAPublicKey structure PEM or DER en-
coded
format: the format of params. PEM or DER.
This function will extract the RSAPublicKey found in a PKCS1 formatted structure.
If the structure is PEM encoded, it should have a header of "BEGIN RSA PRIVATE
KEY".
In case of failure a negative value will be returned, and 0 on success.

[Function]int gnutls_rsa_params_import_raw (gnutls rsa params t
rsa_params, const gnutls datum t * m, const gnutls datum t * e, const
gnutls datum t * d, const gnutls datum t * p, const gnutls datum t * q, const
gnutls datum t * u)

rsa params: Is a structure will hold the parameters
m: holds the modulus
e: holds the public exponent

Chapter 9: Function reference 101

d: holds the private exponent
p: holds the first prime (p)
q: holds the second prime (q)
u: holds the coefficient
This function will replace the parameters in the given structure. The new parameters
should be stored in the appropriate gnutls datum.

[Function]int gnutls_rsa_params_init (gnutls rsa params t * rsa_params)
rsa params: Is a structure that will hold the parameters
This function will initialize the temporary RSA parameters structure.

[Function]int gnutls_server_name_get (gnutls session t session, void * data,
size t * data_length, unsigned int * type, unsigned int indx)

session: is a gnutls_session_t structure.
data: will hold the data
data length: will hold the data length. Must hold the maximum size of data.
type: will hold the server name indicator type
indx: is the index of the server name
This function will allow you to get the name indication (if any), a client has sent.
The name indication may be any of the enumeration gnutls server name type t.
If type is GNUTLS NAME DNS, then this function is to be used by servers that
support virtual hosting, and the data will be a null terminated UTF-8 string.
If data has not enough size to hold the server name GNUTLS E SHORT MEMORY BUFFER
is returned, and data_length will hold the required size.
index is used to retrieve more than one server names (if sent by the client). The first
server name has an index of 0, the second 1 and so on. If no name with the given
index exists GNUTLS E REQUESTED DATA NOT AVAILABLE is returned.

[Function]int gnutls_server_name_set (gnutls session t session,
gnutls server name type t type, const void * name, size t name_length)

session: is a gnutls_session_t structure.
type: specifies the indicator type
name: is a string that contains the server name.
name length: holds the length of name
This function is to be used by clients that want to inform (via a TLS extension
mechanism) the server of the name they connected to. This should be used by clients
that connect to servers that do virtual hosting.
The value of name depends on the ind type. In case of GNUTLS NAME DNS, an
ASCII or UTF-8 null terminated string, without the trailing dot, is expected. IPv4
or IPv6 addresses are not permitted.

[Function]int gnutls_session_get_data (gnutls session t session, void *
session_data, size t * session_data_size)

session: is a gnutls_session_t structure.

Chapter 9: Function reference 102

session data: is a pointer to space to hold the session.
session data size: is the session data’s size, or it will be set by the function.
Returns all session parameters, in order to support resuming. The client should call
this, and keep the returned session, if he wants to resume that current version later by
calling gnutls_session_set_data() This function must be called after a successful
handshake.
Resuming sessions is really useful and speedups connections after a succesful one.

[Function]int gnutls_session_get_id (gnutls session t session, void *
session_id, size t * session_id_size)

session: is a gnutls_session_t structure.
session id: is a pointer to space to hold the session id.
session id size: is the session id’s size, or it will be set by the function.
Returns the current session id. This can be used if you want to check if the next
session you tried to resume was actually resumed. This is because resumed sessions
have the same sessionID with the original session.
Session id is some data set by the server, that identify the current session. In TLS
1.0 and SSL 3.0 session id is always less than 32 bytes.

[Function]void * gnutls_session_get_ptr (gnutls session t session)
session: is a gnutls_session_t structure.
This function will return the user given pointer from the session structure. This is
the pointer set with gnutls_session_set_ptr().

[Function]int gnutls_session_is_resumed (gnutls session t session)
session: is a gnutls_session_t structure.
This function will return non zero if this session is a resumed one, or a zero if this is
a new session.

[Function]int gnutls_session_set_data (gnutls session t session, const void *
session_data, size t session_data_size)

session: is a gnutls_session_t structure.
session data: is a pointer to space to hold the session.
session data size: is the session’s size
Sets all session parameters, in order to resume a previously established session. The
session data given must be the one returned by gnutls_session_get_data(). This
function should be called before gnutls_handshake().
Keep in mind that session resuming is advisory. The server may choose not to resume
the session, thus a full handshake will be performed.
Returns a negative value on error.

[Function]void gnutls_session_set_ptr (gnutls session t session, void * ptr)
session: is a gnutls_session_t structure.
ptr: is the user pointer
This function will set (assosiate) the user given pointer to the session structure. This
is pointer can be accessed with gnutls_session_get_ptr().

Chapter 9: Function reference 103

[Function]int gnutls_set_default_export_priority (gnutls session t
session)

session: is a gnutls_session_t structure.

Sets some default priority on the ciphers, key exchange methods, macs and com-
pression methods. This is to avoid using the gnutls *_priority() functions, if
these defaults are ok. This function also includes weak algorithms. The order is
TLS1, SSL3 for protocols, RSA, DHE DSS, DHE RSA, RSA EXPORT for key ex-
change algorithms. SHA, MD5, RIPEMD160 for MAC algorithms, AES 256 CBC,
AES 128 CBC, and 3DES CBC, ARCFOUR 128, ARCFOUR 40 for ciphers.

[Function]int gnutls_set_default_priority (gnutls session t session)
session: is a gnutls_session_t structure.

Sets some default priority on the ciphers, key exchange methods, macs and compres-
sion methods. This is to avoid using the gnutls *_priority() functions, if these
defaults are ok. You may override any of the following priorities by calling the ap-
propriate functions.

The order is TLS1, SSL3 for protocols. RSA, DHE DSS, DHE RSA for key exchange
algorithms. SHA, MD5 and RIPEMD160 for MAC algorithms. AES 256 CBC,
AES 128 CBC, 3DES CBC, and ARCFOUR 128 for ciphers.

[Function]const char * gnutls_sign_algorithm_get_name
(gnutls sign algorithm t algorithm)

algorithm: is a sign algorithm

Returns a string that contains the name of the specified sign algorithm or NULL.

[Function]const char * gnutls_strerror (int error)
error: is an error returned by a gnutls function. Error is always a negative value.

This function is similar to strerror(). Differences: it accepts an error number
returned by a gnutls function; In case of an unknown error a descriptive string is sent
instead of NULL.

[Function]void gnutls_transport_get_ptr2 (gnutls session t session,
gnutls transport ptr t * recv_ptr, gnutls transport ptr t * send_ptr)

session: is a gnutls_session_t structure.

recv ptr: will hold the value for the pull function

send ptr: will hold the value for the push function

Used to get the arguments of the transport functions (like PUSH and PULL). These
should have been set using gnutls_transport_set_ptr2().

[Function]gnutls_transport_ptr_t gnutls_transport_get_ptr
(gnutls session t session)

session: is a gnutls_session_t structure.

Used to get the first argument of the transport function (like PUSH and PULL). This
must have been set using gnutls_transport_set_ptr().

Chapter 9: Function reference 104

[Function]void gnutls_transport_set_lowat (gnutls session t session, int
num)

session: is a gnutls_session_t structure.
num: is the low water value.
Used to set the lowat value in order for select to check if there are pending data to
socket buffer. Used only if you have changed the default low water value (default is
1). Normally you will not need that function. This function is only useful if using
berkeley style sockets. Otherwise it must be called and set lowat to zero.

[Function]void gnutls_transport_set_ptr2 (gnutls session t session,
gnutls transport ptr t recv_ptr, gnutls transport ptr t send_ptr)

session: is a gnutls_session_t structure.
recv ptr: is the value for the pull function
send ptr: is the value for the push function
Used to set the first argument of the transport function (like PUSH and PULL). In
berkeley style sockets this function will set the connection handle. With this function
you can use two different pointers for receiving and sending.

[Function]void gnutls_transport_set_ptr (gnutls session t session,
gnutls transport ptr t ptr)

session: is a gnutls_session_t structure.
ptr: is the value.
Used to set the first argument of the transport function (like PUSH and PULL). In
berkeley style sockets this function will set the connection handle.

[Function]void gnutls_transport_set_pull_function (gnutls session t
session, gnutls pull func pull_func)

session: gnutls session
pull func: it’s a function like read
This is the function where you set a function for gnutls to receive data.
Normally, if you use berkeley style sockets, you may not use this function
since the default (recv(2)) will probably be ok. This function should be called
once and after gnutls_global_init(). PULL FUNC is of the form, ssize t
(*gnutls pull func)(gnutls transport ptr t, const void*, size t);

[Function]void gnutls_transport_set_push_function (gnutls session t
session, gnutls push func push_func)

session: gnutls session
push func: it’s a function like write
This is the function where you set a push function for gnutls to use in order to send
data. If you are going to use berkeley style sockets, you may not use this function
since the default (send(2)) will probably be ok. Otherwise you should specify this
function for gnutls to be able to send data.
This function should be called once and after gnutls_global_init(). PUSH FUNC
is of the form, ssize t (*gnutls push func)(gnutls transport ptr t, const void*, size t);

Chapter 9: Function reference 105

9.2 X.509 certificate functions

The following functions are to be used for X.509 certificate handling. Their prototypes lie
in ‘gnutls/x509.h’.

[Function]time_t _gnutls_x509_get_raw_crt_activation_time (const
gnutls datum t * cert)

cert: should contain an X.509 DER encoded certificate
This function will return the certificate’s activation time in UNIX time (ie seconds
since 00:00:00 UTC January 1, 1970). Returns a (time t) -1 in case of an error.

[Function]time_t _gnutls_x509_get_raw_crt_expiration_time (const
gnutls datum t * cert)

cert: should contain an X.509 DER encoded certificate
This function will return the certificate’s expiration time in UNIX time (ie seconds
since 00:00:00 UTC January 1, 1970). Returns a (time t) -1 in case of an error.

[Function]int gnutls_pkcs12_bag_decrypt (gnutls pkcs12 bag t bag, const char
* pass)

bag : The bag
pass: The password used for encryption. This can only be ASCII.
This function will decrypt the given encrypted bag and return 0 on success.

[Function]void gnutls_pkcs12_bag_deinit (gnutls pkcs12 bag t bag)
bag : The structure to be initialized
This function will deinitialize a PKCS12 Bag structure.

[Function]int gnutls_pkcs12_bag_encrypt (gnutls pkcs12 bag t bag, const char
* pass, unsigned int flags)

bag : The bag
pass: The password used for encryption. This can only be ASCII.
flags: should be one of gnutls pkcs encrypt flags t elements bitwise or’d
This function will encrypt the given bag and return 0 on success.

[Function]int gnutls_pkcs12_bag_get_count (gnutls pkcs12 bag t bag)
bag : The bag
This function will return the number of the elements withing the bag.

[Function]int gnutls_pkcs12_bag_get_data (gnutls pkcs12 bag t bag, int
indx, gnutls datum t * data)

bag : The bag
indx: The element of the bag to get the data from
data: where the bag’s data will be. Should be treated as constant.
This function will return the bag’s data. The data is a constant that is stored into
the bag. Should not be accessed after the bag is deleted.
Returns 0 on success and a negative error code on error.

Chapter 9: Function reference 106

[Function]int gnutls_pkcs12_bag_get_friendly_name (gnutls pkcs12 bag t
bag, int indx, char ** name)

bag : The bag
indx: The bag’s element to add the id
name: will hold a pointer to the name (to be treated as const)
This function will return the friendly name, of the specified bag element. The key ID
is usually used to distinguish the local private key and the certificate pair.
Returns 0 on success, or a negative value on error.

[Function]int gnutls_pkcs12_bag_get_key_id (gnutls pkcs12 bag t bag, int
indx, gnutls datum t * id)

bag : The bag
indx: The bag’s element to add the id
id: where the ID will be copied (to be treated as const)
This function will return the key ID, of the specified bag element. The key ID is
usually used to distinguish the local private key and the certificate pair.
Returns 0 on success, or a negative value on error.

[Function]gnutls_pkcs12_bag_type_t gnutls_pkcs12_bag_get_type
(gnutls pkcs12 bag t bag, int indx)

bag : The bag
indx: The element of the bag to get the type
This function will return the bag’s type. One of the gnutls pkcs12 bag type t enu-
merations.

[Function]int gnutls_pkcs12_bag_init (gnutls pkcs12 bag t * bag)
bag : The structure to be initialized
This function will initialize a PKCS12 bag structure. PKCS12 Bags usually contain
private keys, lists of X.509 Certificates and X.509 Certificate revocation lists.
Returns 0 on success.

[Function]int gnutls_pkcs12_bag_set_crl (gnutls pkcs12 bag t bag,
gnutls x509 crl t crl)

bag : The bag
crl: the CRL to be copied.
This function will insert the given CRL into the bag. This is just a wrapper over
gnutls_pkcs12_bag_set_data().
Returns the index of the added bag on success, or a negative value on failure.

[Function]int gnutls_pkcs12_bag_set_crt (gnutls pkcs12 bag t bag,
gnutls x509 crt t crt)

bag : The bag
crt: the certificate to be copied.
This function will insert the given certificate into the bag. This is just a wrapper over
gnutls_pkcs12_bag_set_data().
Returns the index of the added bag on success, or a negative value on failure.

Chapter 9: Function reference 107

[Function]int gnutls_pkcs12_bag_set_data (gnutls pkcs12 bag t bag,
gnutls pkcs12 bag type t type, const gnutls datum t * data)

bag : The bag
type: The data’s type
data: the data to be copied.
This function will insert the given data of the given type into the bag.
Returns the index of the added bag on success, or a negative value on error.

[Function]int gnutls_pkcs12_bag_set_friendly_name (gnutls pkcs12 bag t
bag, int indx, const char * name)

bag : The bag
indx: The bag’s element to add the id
name: the name
This function will add the given key friendly name, to the specified, by the index,
bag element. The name will be encoded as a ’Friendly name’ bag attribute, which is
usually used to set a user name to the local private key and the certificate pair.
Returns 0 on success, or a negative value on error.

[Function]int gnutls_pkcs12_bag_set_key_id (gnutls pkcs12 bag t bag, int
indx, const gnutls datum t * id)

bag : The bag
indx: The bag’s element to add the id
id: the ID
This function will add the given key ID, to the specified, by the index, bag element.
The key ID will be encoded as a ’Local key identifier’ bag attribute, which is usually
used to distinguish the local private key and the certificate pair.
Returns 0 on success, or a negative value on error.

[Function]void gnutls_pkcs12_deinit (gnutls pkcs12 t pkcs12)
pkcs12: The structure to be initialized
This function will deinitialize a PKCS12 structure.

[Function]int gnutls_pkcs12_export (gnutls pkcs12 t pkcs12,
gnutls x509 crt fmt t format, void * output_data, size t *
output_data_size)

pkcs12: Holds the pkcs12 structure
format: the format of output params. One of PEM or DER.
output data: will contain a structure PEM or DER encoded
output data size: holds the size of output data (and will be replaced by the actual
size of parameters)
This function will export the pkcs12 structure to DER or PEM format.
If the buffer provided is not long enough to hold the output, then
GNUTLS E SHORT MEMORY BUFFER will be returned.
If the structure is PEM encoded, it will have a header of "BEGIN PKCS12".
In case of failure a negative value will be returned, and 0 on success.

Chapter 9: Function reference 108

[Function]int gnutls_pkcs12_generate_mac (gnutls pkcs12 t pkcs12, const
char * pass)

pass: The password for the MAC

This function will generate a MAC for the PKCS12 structure. Returns 0 on success.

[Function]int gnutls_pkcs12_get_bag (gnutls pkcs12 t pkcs12, int indx,
gnutls pkcs12 bag t bag)

indx: contains the index of the bag to extract

bag : An initialized bag, where the contents of the bag will be copied

This function will return a Bag from the PKCS12 structure. Returns 0 on success.

After the last Bag has been read GNUTLS E REQUESTED DATA NOT AVAILABLE
will be returned.

[Function]int gnutls_pkcs12_import (gnutls pkcs12 t pkcs12, const
gnutls datum t * data, gnutls x509 crt fmt t format, unsigned int flags)

pkcs12: The structure to store the parsed PKCS12.

data: The DER or PEM encoded PKCS12.

format: One of DER or PEM

flags: an ORed sequence of gnutls privkey pkcs8 flags

This function will convert the given DER or PEM encoded PKCS12 to the native
gnutls pkcs12 t format. The output will be stored in ’pkcs12’.

If the PKCS12 is PEM encoded it should have a header of "PKCS12".

Returns 0 on success.

[Function]int gnutls_pkcs12_init (gnutls pkcs12 t * pkcs12)
pkcs12: The structure to be initialized

This function will initialize a PKCS12 structure. PKCS12 structures usually contain
lists of X.509 Certificates and X.509 Certificate revocation lists.

Returns 0 on success.

[Function]int gnutls_pkcs12_set_bag (gnutls pkcs12 t pkcs12,
gnutls pkcs12 bag t bag)

bag : An initialized bag

This function will insert a Bag into the PKCS12 structure. Returns 0 on success.

[Function]int gnutls_pkcs12_verify_mac (gnutls pkcs12 t pkcs12, const char *
pass)

pass: The password for the MAC

This function will verify the MAC for the PKCS12 structure. Returns 0 on success.

[Function]void gnutls_pkcs7_deinit (gnutls pkcs7 t pkcs7)
pkcs7: The structure to be initialized

This function will deinitialize a PKCS7 structure.

Chapter 9: Function reference 109

[Function]int gnutls_pkcs7_delete_crl (gnutls pkcs7 t pkcs7, int indx)
indx: the index of the crl to delete

This function will delete a crl from a PKCS7 or RFC2630 crl set. Index starts from
0. Returns 0 on success.

[Function]int gnutls_pkcs7_delete_crt (gnutls pkcs7 t pkcs7, int indx)
indx: the index of the certificate to delete

This function will delete a certificate from a PKCS7 or RFC2630 certificate set. Index
starts from 0. Returns 0 on success.

[Function]int gnutls_pkcs7_export (gnutls pkcs7 t pkcs7,
gnutls x509 crt fmt t format, void * output_data, size t *
output_data_size)

pkcs7: Holds the pkcs7 structure

format: the format of output params. One of PEM or DER.

output data: will contain a structure PEM or DER encoded

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will export the pkcs7 structure to DER or PEM format.

If the buffer provided is not long enough to hold the output, then
GNUTLS E SHORT MEMORY BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN PKCS7".

In case of failure a negative value will be returned, and 0 on success.

[Function]int gnutls_pkcs7_get_crl_count (gnutls pkcs7 t pkcs7)
This function will return the number of certifcates in the PKCS7 or RFC2630 crl set.

Returns a negative value on failure.

[Function]int gnutls_pkcs7_get_crl_raw (gnutls pkcs7 t pkcs7, int indx, void
* crl, size t * crl_size)

indx: contains the index of the crl to extract

crl: the contents of the crl will be copied there (may be null)

crl size: should hold the size of the crl

This function will return a crl of the PKCS7 or RFC2630 crl set. Re-
turns 0 on success. If the provided buffer is not long enough, then
GNUTLS E SHORT MEMORY BUFFER is returned.

After the last crl has been read GNUTLS E REQUESTED DATA NOT AVAILABLE
will be returned.

[Function]int gnutls_pkcs7_get_crt_count (gnutls pkcs7 t pkcs7)
This function will return the number of certifcates in the PKCS7 or RFC2630 certifi-
cate set.

Returns a negative value on failure.

Chapter 9: Function reference 110

[Function]int gnutls_pkcs7_get_crt_raw (gnutls pkcs7 t pkcs7, int indx, void
* certificate, size t * certificate_size)

indx: contains the index of the certificate to extract

certificate: the contents of the certificate will be copied there (may be null)

certificate size: should hold the size of the certificate

This function will return a certificate of the PKCS7 or RFC2630 certificate
set. Returns 0 on success. If the provided buffer is not long enough, then
GNUTLS E SHORT MEMORY BUFFER is returned.

After the last certificate has been read GNUTLS E REQUESTED DATA NOT AVAILABLE
will be returned.

[Function]int gnutls_pkcs7_import (gnutls pkcs7 t pkcs7, const
gnutls datum t * data, gnutls x509 crt fmt t format)

pkcs7: The structure to store the parsed PKCS7.

data: The DER or PEM encoded PKCS7.

format: One of DER or PEM

This function will convert the given DER or PEM encoded PKCS7 to the native
gnutls pkcs7 t format. The output will be stored in ’pkcs7’.

If the PKCS7 is PEM encoded it should have a header of "PKCS7".

Returns 0 on success.

[Function]int gnutls_pkcs7_init (gnutls pkcs7 t * pkcs7)
pkcs7: The structure to be initialized

This function will initialize a PKCS7 structure. PKCS7 structures usually contain
lists of X.509 Certificates and X.509 Certificate revocation lists.

Returns 0 on success.

[Function]int gnutls_pkcs7_set_crl_raw (gnutls pkcs7 t pkcs7, const
gnutls datum t * crl)

crl: the DER encoded crl to be added

This function will add a crl to the PKCS7 or RFC2630 crl set. Returns 0 on success.

[Function]int gnutls_pkcs7_set_crl (gnutls pkcs7 t pkcs7, gnutls x509 crl t
crl)

crl: the DER encoded crl to be added

This function will add a parsed crl to the PKCS7 or RFC2630 crl set. Returns 0 on
success.

[Function]int gnutls_pkcs7_set_crt_raw (gnutls pkcs7 t pkcs7, const
gnutls datum t * crt)

crt: the DER encoded certificate to be added

This function will add a certificate to the PKCS7 or RFC2630 certificate set. Returns
0 on success.

Chapter 9: Function reference 111

[Function]int gnutls_pkcs7_set_crt (gnutls pkcs7 t pkcs7, gnutls x509 crt t
crt)

crt: the certificate to be copied.
This function will add a parsed certificate to the PKCS7 or RFC2630 certificate set.
This is a wrapper function over gnutls_pkcs7_set_crt_raw() .
Returns 0 on success.

[Function]int gnutls_x509_crl_check_issuer (gnutls x509 crl t cert,
gnutls x509 crt t issuer)

issuer: is the certificate of a possible issuer
This function will check if the given CRL was issued by the given issuer certificate.
It will return true (1) if the given CRL was issued by the given issuer, and false (0)
if not.
A negative value is returned in case of an error.

[Function]void gnutls_x509_crl_deinit (gnutls x509 crl t crl)
crl: The structure to be initialized
This function will deinitialize a CRL structure.

[Function]int gnutls_x509_crl_export (gnutls x509 crl t crl,
gnutls x509 crt fmt t format, void * output_data, size t *
output_data_size)

crl: Holds the revocation list
format: the format of output params. One of PEM or DER.
output data: will contain a private key PEM or DER encoded
output data size: holds the size of output data (and will be replaced by the actual
size of parameters)
This function will export the revocation list to DER or PEM format.
If the buffer provided is not long enough to hold the output, then
GNUTLS E SHORT MEMORY BUFFER will be returned.
If the structure is PEM encoded, it will have a header of "BEGIN X509 CRL".
Returns 0 on success, and a negative value on failure.

[Function]int gnutls_x509_crl_get_crt_count (gnutls x509 crl t crl)
crl: should contain a gnutls x509 crl t structure
This function will return the number of revoked certificates in the given CRL.
Returns a negative value on failure.

[Function]int gnutls_x509_crl_get_crt_serial (gnutls x509 crl t crl, int
index, unsigned char * serial, size t * serial_size, time t * time)

crl: should contain a gnutls x509 crl t structure
index: the index of the certificate to extract (starting from 0)
serial: where the serial number will be copied
serial size: initially holds the size of serial
time: if non null, will hold the time this certificate was revoked

Chapter 9: Function reference 112

This function will return the serial number of the specified, by the index, revoked
certificate.
Returns a negative value on failure.

[Function]int gnutls_x509_crl_get_dn_oid (gnutls x509 crl t crl, int indx,
void * oid, size t * sizeof_oid)

crl: should contain a gnutls x509 crl t structure
indx: Specifies which DN OID to send. Use zero to get the first one.
oid: a pointer to a structure to hold the name (may be null)
sizeof oid: initially holds the size of ’oid’
This function will extract the requested OID of the name of the CRL issuer, specified
by the given index.
If oid is null then only the size will be filled.
Returns GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not long
enough, and in that case the sizeof oid will be updated with the required size. On
success 0 is returned.

[Function]int gnutls_x509_crl_get_issuer_dn_by_oid (gnutls x509 crl t
crl, const char * oid, int indx, unsigned int raw_flag, void * buf, size t *
sizeof_buf)

crl: should contain a gnutls x509 crl t structure
oid: holds an Object Identified in null terminated string
indx: In case multiple same OIDs exist in the RDN, this specifies which to send. Use
zero to get the first one.
raw flag : If non zero returns the raw DER data of the DN part.
buf : a pointer to a structure to hold the peer’s name (may be null)
sizeof buf : initially holds the size of buf
This function will extract the part of the name of the CRL issuer specified by the
given OID. The output will be encoded as described in RFC2253. The output string
will be ASCII or UTF-8 encoded, depending on the certificate data.
Some helper macros with popular OIDs can be found in gnutls/x509.h If raw flag is
zero, this function will only return known OIDs as text. Other OIDs will be DER
encoded, as described in RFC2253 – in hex format with a ’\#’ prefix. You can check
about known OIDs using gnutls_x509_dn_oid_known().
If buf is null then only the size will be filled.
Returns GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not long
enough, and in that case the sizeof buf will be updated with the required size, and 0
on success.

[Function]int gnutls_x509_crl_get_issuer_dn (gnutls x509 crl t crl, char *
buf, size t * sizeof_buf)

crl: should contain a gnutls x509 crl t structure
buf : a pointer to a structure to hold the peer’s name (may be null)
sizeof buf : initially holds the size of buf

Chapter 9: Function reference 113

This function will copy the name of the CRL issuer in the provided buffer. The name
will be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in RFC2253. The
output string will be ASCII or UTF-8 encoded, depending on the certificate data.
If buf is null then only the size will be filled.
Returns GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not long
enough, and in that case the sizeof buf will be updated with the required size, and 0
on success.

[Function]time_t gnutls_x509_crl_get_next_update (gnutls x509 crl t crl)
crl: should contain a gnutls x509 crl t structure
This function will return the time the next CRL will be issued. This field is optional
in a CRL so it might be normal to get an error instead.
Returns (time t)-1 on error.

[Function]int gnutls_x509_crl_get_signature_algorithm (gnutls x509 crl t
crl)

crl: should contain a gnutls x509 crl t structure
This function will return a value of the gnutls sign algorithm t enumeration that is
the signature algorithm.
Returns a negative value on error.

[Function]time_t gnutls_x509_crl_get_this_update (gnutls x509 crl t crl)
crl: should contain a gnutls x509 crl t structure
This function will return the time this CRL was issued.
Returns (time t)-1 on error.

[Function]int gnutls_x509_crl_get_version (gnutls x509 crl t crl)
crl: should contain a gnutls x509 crl t structure
This function will return the version of the specified CRL.
Returns a negative value on error.

[Function]int gnutls_x509_crl_import (gnutls x509 crl t crl, const
gnutls datum t * data, gnutls x509 crt fmt t format)

crl: The structure to store the parsed CRL.
data: The DER or PEM encoded CRL.
format: One of DER or PEM
This function will convert the given DER or PEM encoded CRL to the native
gnutls x509 crl t format. The output will be stored in ’crl’.
If the CRL is PEM encoded it should have a header of "X509 CRL".
Returns 0 on success.

[Function]int gnutls_x509_crl_init (gnutls x509 crl t * crl)
crl: The structure to be initialized
This function will initialize a CRL structure. CRL stands for Certificate Revoca-
tion List. A revocation list usually contains lists of certificate serial numbers that

Chapter 9: Function reference 114

have been revoked by an Authority. The revocation lists are always signed with the
authority’s private key.

Returns 0 on success.

[Function]int gnutls_x509_crl_set_crt_serial (gnutls x509 crl t crl, const
void * serial, size t serial_size, time t revocation_time)

crl: should contain a gnutls x509 crl t structure

serial: The revoked certificate’s serial number

serial size: Holds the size of the serial field.

revocation time: The time this certificate was revoked

This function will set a revoked certificate’s serial number to the CRL.

Returns 0 on success, or a negative value in case of an error.

[Function]int gnutls_x509_crl_set_crt (gnutls x509 crl t crl,
gnutls x509 crt t crt, time t revocation_time)

crl: should contain a gnutls x509 crl t structure

crt: should contain a gnutls x509 crt t structure with the revoked certificate

revocation time: The time this certificate was revoked

This function will set a revoked certificate’s serial number to the CRL.

Returns 0 on success, or a negative value in case of an error.

[Function]int gnutls_x509_crl_set_next_update (gnutls x509 crl t crl,
time t exp_time)

crl: should contain a gnutls x509 crl t structure

exp time: The actual time

This function will set the time this CRL will be updated.

Returns 0 on success, or a negative value in case of an error.

[Function]int gnutls_x509_crl_set_this_update (gnutls x509 crl t crl,
time t act_time)

crl: should contain a gnutls x509 crl t structure

act time: The actual time

This function will set the time this CRL was issued.

Returns 0 on success, or a negative value in case of an error.

[Function]int gnutls_x509_crl_set_version (gnutls x509 crl t crl, unsigned
int version)

crl: should contain a gnutls x509 crl t structure

version: holds the version number. For CRLv1 crls must be 1.

This function will set the version of the CRL. This must be one for CRL version 1,
and so on. The CRLs generated by gnutls should have a version number of 2.

Returns 0 on success.

Chapter 9: Function reference 115

[Function]int gnutls_x509_crl_sign (gnutls x509 crl t crl, gnutls x509 crt t
issuer, gnutls x509 privkey t issuer_key)

crl: should contain a gnutls x509 crl t structure

issuer: is the certificate of the certificate issuer

issuer key : holds the issuer’s private key

This function will sign the CRL with the issuer’s private key, and will copy the issuer’s
information into the CRL.

This must be the last step in a certificate CRL since all the previously set parameters
are now signed.

Returns 0 on success.

[Function]int gnutls_x509_crl_verify (gnutls x509 crl t crl, const
gnutls x509 crt t * CA_list, int CA_list_length, unsigned int flags,
unsigned int * verify)

crl: is the crl to be verified

CA list: is a certificate list that is considered to be trusted one

CA list length: holds the number of CA certificates in CA list

flags: Flags that may be used to change the verification algorithm. Use OR of the
gnutls certificate verify flags enumerations.

verify : will hold the crl verification output.

This function will try to verify the given crl and return its status. See gnutls_x509_
crt_list_verify() for a detailed description of return values.

Returns 0 on success and a negative value in case of an error.

[Function]void gnutls_x509_crq_deinit (gnutls x509 crq t crq)
crq: The structure to be initialized

This function will deinitialize a CRL structure.

[Function]int gnutls_x509_crq_export (gnutls x509 crq t crq,
gnutls x509 crt fmt t format, void * output_data, size t *
output_data_size)

crq: Holds the request

format: the format of output params. One of PEM or DER.

output data: will contain a certificate request PEM or DER encoded

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will export the certificate request to a PKCS10

If the buffer provided is not long enough to hold the output, then
GNUTLS E SHORT MEMORY BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN NEW CERTIFI-
CATE REQUEST".

In case of failure a negative value will be returned, and 0 on success.

Chapter 9: Function reference 116

[Function]int gnutls_x509_crq_get_challenge_password (gnutls x509 crq t
crq, char * pass, size t * sizeof_pass)

crq: should contain a gnutls x509 crq t structure

pass: will hold a null terminated password

sizeof pass: Initially holds the size of pass.

This function will return the challenge password in the request.

Returns 0 on success.

[Function]int gnutls_x509_crq_get_dn_by_oid (gnutls x509 crq t crq, const
char * oid, int indx, unsigned int raw_flag, void * buf, size t *
sizeof_buf)

crq: should contain a gnutls x509 crq t structure

oid: holds an Object Identified in null terminated string

indx: In case multiple same OIDs exist in the RDN, this specifies which to send. Use
zero to get the first one.

raw flag : If non zero returns the raw DER data of the DN part.

buf : a pointer to a structure to hold the name (may be null)

sizeof buf : initially holds the size of buf

This function will extract the part of the name of the Certificate request subject,
specified by the given OID. The output will be encoded as described in RFC2253.
The output string will be ASCII or UTF-8 encoded, depending on the certificate data.

Some helper macros with popular OIDs can be found in gnutls/x509.h If raw flag is
zero, this function will only return known OIDs as text. Other OIDs will be DER
encoded, as described in RFC2253 – in hex format with a ’\#’ prefix. You can check
about known OIDs using gnutls_x509_dn_oid_known().

If buf is null then only the size will be filled.

Returns GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not long
enough, and in that case the sizeof buf will be updated with the required size. On
success 0 is returned.

[Function]int gnutls_x509_crq_get_dn_oid (gnutls x509 crq t crq, int indx,
void * oid, size t * sizeof_oid)

crq: should contain a gnutls x509 crq t structure

indx: Specifies which DN OID to send. Use zero to get the first one.

oid: a pointer to a structure to hold the name (may be null)

sizeof oid: initially holds the size of oid

This function will extract the requested OID of the name of the Certificate request
subject, specified by the given index.

If oid is null then only the size will be filled.

Returns GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not long
enough, and in that case the sizeof oid will be updated with the required size. On
success 0 is returned.

Chapter 9: Function reference 117

[Function]int gnutls_x509_crq_get_dn (gnutls x509 crq t crq, char * buf,
size t * sizeof_buf)

crq: should contain a gnutls x509 crq t structure
buf : a pointer to a structure to hold the name (may be null)
sizeof buf : initially holds the size of buf
This function will copy the name of the Certificate request subject in the provided
buffer. The name will be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in
RFC2253. The output string will be ASCII or UTF-8 encoded, depending on the
certificate data.
If buf is null then only the size will be filled.
Returns GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not long
enough, and in that case the sizeof buf will be updated with the required size. On
success 0 is returned.

[Function]int gnutls_x509_crq_get_pk_algorithm (gnutls x509 crq t crq,
unsigned int * bits)

crq: should contain a gnutls x509 crq t structure
bits: if bits is non null it will hold the size of the parameters’ in bits
This function will return the public key algorithm of a PKCS \#10 certificate request.
If bits is non null, it should have enough size to hold the parameters size in bits. For
RSA the bits returned is the modulus. For DSA the bits returned are of the public
exponent.
Returns a member of the gnutls pk algorithm t enumeration on success, or a negative
value on error.

[Function]int gnutls_x509_crq_get_version (gnutls x509 crq t crq)
crq: should contain a gnutls x509 crq t structure
This function will return the version of the specified Certificate request.
Returns a negative value on error.

[Function]int gnutls_x509_crq_import (gnutls x509 crq t crq, const
gnutls datum t * data, gnutls x509 crt fmt t format)

crq: The structure to store the parsed certificate request.
data: The DER or PEM encoded certificate.
format: One of DER or PEM
This function will convert the given DER or PEM encoded Certificate to the native
gnutls x509 crq t format. The output will be stored in cert.
If the Certificate is PEM encoded it should have a header of "NEW CERTIFICATE
REQUEST".
Returns 0 on success.

[Function]int gnutls_x509_crq_init (gnutls x509 crq t * crq)
crq: The structure to be initialized
This function will initialize a PKCS10 certificate request structure.
Returns 0 on success.

Chapter 9: Function reference 118

[Function]int gnutls_x509_crq_set_challenge_password (gnutls x509 crq t
crq, const char * pass)

crq: should contain a gnutls x509 crq t structure

pass: holds a null terminated password

This function will set a challenge password to be used when revoking the request.

Returns 0 on success.

[Function]int gnutls_x509_crq_set_dn_by_oid (gnutls x509 crq t crq, const
char * oid, unsigned int raw_flag, const void * data, unsigned int
sizeof_data)

crq: should contain a gnutls x509 crq t structure

oid: holds an Object Identifier in a null terminated string

raw flag : must be 0, or 1 if the data are DER encoded

data: a pointer to the input data

sizeof data: holds the size of data

This function will set the part of the name of the Certificate request subject, specified
by the given OID. The input string should be ASCII or UTF-8 encoded.

Some helper macros with popular OIDs can be found in gnutls/x509.h With this
function you can only set the known OIDs. You can test for known OIDs using
gnutls_x509_dn_oid_known(). For OIDs that are not known (by gnutls) you should
properly DER encode your data, and call this function with raw flag set.

Returns 0 on success.

[Function]int gnutls_x509_crq_set_key (gnutls x509 crq t crq,
gnutls x509 privkey t key)

crq: should contain a gnutls x509 crq t structure

key : holds a private key

This function will set the public parameters from the given private key to the request.
Only RSA keys are currently supported.

Returns 0 on success.

[Function]int gnutls_x509_crq_set_version (gnutls x509 crq t crq, unsigned
int version)

crq: should contain a gnutls x509 crq t structure

version: holds the version number. For v1 Requests must be 1.

This function will set the version of the certificate request. For version 1 requests this
must be one.

Returns 0 on success.

[Function]int gnutls_x509_crq_sign (gnutls x509 crq t crq,
gnutls x509 privkey t key)

crq: should contain a gnutls x509 crq t structure

key : holds a private key

Chapter 9: Function reference 119

This function will sign the certificate request with a private key. This must be the
same key as the one used in gnutls_x509_crt_set_key() since a certificate request
is self signed.

This must be the last step in a certificate request generation since all the previously
set parameters are now signed.

Returns 0 on success.

[Function]int gnutls_x509_crt_check_hostname (gnutls x509 crt t cert, const
char * hostname)

cert: should contain an gnutls x509 crt t structure

hostname: A null terminated string that contains a DNS name

This function will check if the given certificate’s subject matches the given hostname.
This is a basic implementation of the matching described in RFC2818 (HTTPS),
which takes into account wildcards, and the subject alternative name PKIX extension.

Returns non zero on success, and zero on failure.

[Function]int gnutls_x509_crt_check_issuer (gnutls x509 crt t cert,
gnutls x509 crt t issuer)

cert: is the certificate to be checked

issuer: is the certificate of a possible issuer

This function will check if the given certificate was issued by the given issuer. It will
return true (1) if the given certificate is issued by the given issuer, and false (0) if
not.

A negative value is returned in case of an error.

[Function]int gnutls_x509_crt_check_revocation (gnutls x509 crt t cert,
const gnutls x509 crl t * crl_list, int crl_list_length)

cert: should contain a gnutls x509 crt t structure

crl list: should contain a list of gnutls x509 crl t structures

crl list length: the length of the crl list

This function will return check if the given certificate is revoked. It is assumed that
the CRLs have been verified before.

Returns 0 if the certificate is NOT revoked, and 1 if it is. A negative value is returned
on error.

[Function]int gnutls_x509_crt_cpy_crl_dist_points (gnutls x509 crt t dst,
gnutls x509 crt t src)

dst: should contain a gnutls x509 crt t structure

src: the certificate where the dist points will be copied from

This function will copy the CRL distribution points certificate extension, from the
source to the destination certificate. This may be useful to copy from a CA certificate
to issued ones.

Returns 0 on success.

Chapter 9: Function reference 120

[Function]void gnutls_x509_crt_deinit (gnutls x509 crt t cert)
cert: The structure to be initialized

This function will deinitialize a CRL structure.

[Function]int gnutls_x509_crt_export (gnutls x509 crt t cert,
gnutls x509 crt fmt t format, void * output_data, size t *
output_data_size)

cert: Holds the certificate

format: the format of output params. One of PEM or DER.

output data: will contain a certificate PEM or DER encoded

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will export the certificate to DER or PEM format.

If the buffer provided is not long enough to hold the output, then
GNUTLS E SHORT MEMORY BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN CERTIFICATE".

In case of failure a negative value will be returned, and 0 on success.

[Function]time_t gnutls_x509_crt_get_activation_time (gnutls x509 crt t
cert)

cert: should contain a gnutls x509 crt t structure

This function will return the time this Certificate was or will be activated.

Returns (time t)-1 on error.

[Function]int gnutls_x509_crt_get_authority_key_id (gnutls x509 crt t
cert, void * ret, size t * ret_size, unsigned int * critical)

cert: should contain a gnutls x509 crt t structure

critical: will be non zero if the extension is marked as critical (may be null)

This function will return the X.509v3 certificate authority’s key identifier. This is
obtained by the X.509 Authority Key identifier extension field (2.5.29.35). Note that
this function only returns the keyIdentifier field of the extension.

Returns 0 on success and a negative value in case of an error.

[Function]int gnutls_x509_crt_get_ca_status (gnutls x509 crt t cert,
unsigned int * critical)

cert: should contain a gnutls x509 crt t structure

critical: will be non zero if the extension is marked as critical

This function will return certificates CA status, by reading the basicConstraints X.509
extension (2.5.29.19). If the certificate is a CA a positive value will be returned, or
zero if the certificate does not have CA flag set.

A negative value may be returned in case of parsing error. If the certificate does not
contain the basicConstraints extension GNUTLS E REQUESTED DATA NOT AVAILABLE
will be returned.

Chapter 9: Function reference 121

[Function]int gnutls_x509_crt_get_crl_dist_points (gnutls x509 crt t
cert, unsigned int seq, void * ret, size t * ret_size, unsigned int *
reason_flags, unsigned int * critical)

cert: should contain a gnutls x509 crt t structure
seq: specifies the sequence number of the distribution point (0 for the first one, 1 for
the second etc.)
ret: is the place where the distribution point will be copied to
ret size: holds the size of ret.
reason flags: Revocation reasons flags.
critical: will be non zero if the extension is marked as critical (may be null)
This function will return the CRL distribution points (2.5.29.31), contained in the
given certificate.
reason_flags should be an ORed sequence of GNUTLS CRL REASON UNUSED,
GNUTLS CRL REASON KEY COMPROMISE, GNUTLS CRL REASON CA COMPROMISE,
GNUTLS CRL REASON AFFILIATION CHANGED, GNUTLS CRL REASON SUPERSEEDED,
GNUTLS CRL REASON CESSATION OF OPERATION, GNUTLS CRL REASON CERTIFICATE HOLD,
GNUTLS CRL REASON PRIVILEGE WITHDRAWN, GNUTLS CRL REASON AA COMPROMISE,
or zero for all possible reasons.
This is specified in X509v3 Certificate Extensions. GNUTLS will return the distri-
bution point type, or a negative error code on error.
Returns GNUTLS E SHORT MEMORY BUFFER if ret size is not enough to hold
the distribution point, or the type of the distribution point if everything was ok. The
type is one of the enumerated gnutls x509 subject alt name t.
If the certificate does not have an Alternative name with the specified sequence num-
ber then returns GNUTLS E REQUESTED DATA NOT AVAILABLE;

[Function]int gnutls_x509_crt_get_dn_by_oid (gnutls x509 crt t cert, const
char * oid, int indx, unsigned int raw_flag, void * buf, size t *
sizeof_buf)

cert: should contain a gnutls x509 crt t structure
oid: holds an Object Identified in null terminated string
indx: In case multiple same OIDs exist in the RDN, this specifies which to send. Use
zero to get the first one.
raw flag : If non zero returns the raw DER data of the DN part.
buf : a pointer to a structure to hold the name (may be null)
sizeof buf : initially holds the size of buf
This function will extract the part of the name of the Certificate subject, specified
by the given OID. The output string will be ASCII or UTF-8 encoded, depending on
the certificate data.
Some helper macros with popular OIDs can be found in gnutls/x509.h If raw flag is
zero, this function will only return known OIDs as text. Other OIDs will be DER
encoded, as described in RFC2253 – in hex format with a ’\#’ prefix. You can check
about known OIDs using gnutls_x509_dn_oid_known().

Chapter 9: Function reference 122

If buf is null then only the size will be filled.
Returns GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not long
enough, and in that case the sizeof buf will be updated with the required size. On
success 0 is returned.

[Function]int gnutls_x509_crt_get_dn_oid (gnutls x509 crt t cert, int indx,
void * oid, size t * sizeof_oid)

cert: should contain a gnutls x509 crt t structure
indx: This specifies which OID to return. Use zero to get the first one.
oid: a pointer to a buffer to hold the OID (may be null)
sizeof oid: initially holds the size of oid
This function will extract the OIDs of the name of the Certificate subject specified
by the given index.
If oid is null then only the size will be filled.
Returns GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not long
enough, and in that case the sizeof oid will be updated with the required size. On
success 0 is returned.

[Function]int gnutls_x509_crt_get_dn (gnutls x509 crt t cert, char * buf,
size t * sizeof_buf)

cert: should contain a gnutls x509 crt t structure
buf : a pointer to a structure to hold the name (may be null)
sizeof buf : initially holds the size of buf
This function will copy the name of the Certificate in the provided buffer. The name
will be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in RFC2253. The
output string will be ASCII or UTF-8 encoded, depending on the certificate data.
If buf is null then only the size will be filled.
Returns GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not long
enough, and in that case the sizeof buf will be updated with the required size. On
success 0 is returned.

[Function]time_t gnutls_x509_crt_get_expiration_time (gnutls x509 crt t
cert)

cert: should contain a gnutls x509 crt t structure
This function will return the time this Certificate was or will be expired.
Returns (time t)-1 on error.

[Function]int gnutls_x509_crt_get_extension_by_oid (gnutls x509 crt t
cert, const char * oid, int indx, void * buf, size t * sizeof_buf, unsigned
int * critical)

cert: should contain a gnutls x509 crt t structure
oid: holds an Object Identified in null terminated string
indx: In case multiple same OIDs exist in the extensions, this specifies which to send.
Use zero to get the first one.

Chapter 9: Function reference 123

buf : a pointer to a structure to hold the name (may be null)
sizeof buf : initially holds the size of buf
critical: will be non zero if the extension is marked as critical
This function will return the extension specified by the OID in the certificate. The
extensions will be returned as binary data DER encoded, in the provided buffer.
A negative value may be returned in case of parsing error. If the certificate does not
contain the specified extension GNUTLS E REQUESTED DATA NOT AVAILABLE
will be returned.

[Function]int gnutls_x509_crt_get_extension_oid (gnutls x509 crt t cert,
int indx, void * oid, size t * sizeof_oid)

cert: should contain a gnutls x509 crt t structure
indx: Specifies which extension OID to send. Use zero to get the first one.
oid: a pointer to a structure to hold the OID (may be null)
sizeof oid: initially holds the size of oid
This function will return the requested extension OID in the certificate. The extension
OID will be stored as a string in the provided buffer.
A negative value may be returned in case of parsing error. If your have reached the
last extension available GNUTLS E REQUESTED DATA NOT AVAILABLE will
be returned.

[Function]int gnutls_x509_crt_get_fingerprint (gnutls x509 crt t cert,
gnutls digest algorithm t algo, void * buf, size t * sizeof_buf)

cert: should contain a gnutls x509 crt t structure
algo: is a digest algorithm
buf : a pointer to a structure to hold the fingerprint (may be null)
sizeof buf : initially holds the size of buf
This function will calculate and copy the certificate’s fingerprint in the provided buffer.
If the buffer is null then only the size will be filled.
Returns GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not long
enough, and in that case the sizeof buf will be updated with the required size. On
success 0 is returned.

[Function]int gnutls_x509_crt_get_issuer_dn_by_oid (gnutls x509 crt t
cert, const char * oid, int indx, unsigned int raw_flag, void * buf, size t *
sizeof_buf)

cert: should contain a gnutls x509 crt t structure
oid: holds an Object Identified in null terminated string
indx: In case multiple same OIDs exist in the RDN, this specifies which to send. Use
zero to get the first one.
raw flag : If non zero returns the raw DER data of the DN part.
buf : a pointer to a structure to hold the name (may be null)
sizeof buf : initially holds the size of buf

Chapter 9: Function reference 124

This function will extract the part of the name of the Certificate issuer specified by
the given OID. The output will be encoded as described in RFC2253. The output
string will be ASCII or UTF-8 encoded, depending on the certificate data.

Some helper macros with popular OIDs can be found in gnutls/x509.h If raw flag is
zero, this function will only return known OIDs as text. Other OIDs will be DER
encoded, as described in RFC2253 – in hex format with a ’\#’ prefix. You can check
about known OIDs using gnutls_x509_dn_oid_known().

If buf is null then only the size will be filled.

Returns GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not long
enough, and in that case the sizeof buf will be updated with the required size. On
success 0 is returned.

[Function]int gnutls_x509_crt_get_issuer_dn_oid (gnutls x509 crt t cert,
int indx, void * oid, size t * sizeof_oid)

cert: should contain a gnutls x509 crt t structure

indx: This specifies which OID to return. Use zero to get the first one.

oid: a pointer to a buffer to hold the OID (may be null)

sizeof oid: initially holds the size of oid

This function will extract the OIDs of the name of the Certificate issuer specified by
the given index.

If oid is null then only the size will be filled.

Returns GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not long
enough, and in that case the sizeof oid will be updated with the required size. On
success 0 is returned.

[Function]int gnutls_x509_crt_get_issuer_dn (gnutls x509 crt t cert, char *
buf, size t * sizeof_buf)

cert: should contain a gnutls x509 crt t structure

buf : a pointer to a structure to hold the name (may be null)

sizeof buf : initially holds the size of buf

This function will copy the name of the Certificate issuer in the provided buffer. The
name will be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in RFC2253. The
output string will be ASCII or UTF-8 encoded, depending on the certificate data.

If buf is null then only the size will be filled.

Returns GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not long
enough, and in that case the sizeof buf will be updated with the required size. On
success 0 is returned.

[Function]int gnutls_x509_crt_get_key_id (gnutls x509 crt t crt, unsigned
int flags, unsigned char * output_data, size t * output_data_size)

crt: Holds the certificate

flags: should be 0 for now

output data: will contain the key ID

Chapter 9: Function reference 125

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will return a unique ID the depends on the public key parameters. This
ID can be used in checking whether a certificate corresponds to the given private key.

If the buffer provided is not long enough to hold the output, then
GNUTLS E SHORT MEMORY BUFFER will be returned. The output
will normally be a SHA-1 hash output, which is 20 bytes.

In case of failure a negative value will be returned, and 0 on success.

[Function]int gnutls_x509_crt_get_key_purpose_oid (gnutls x509 crt t
cert, int indx, void * oid, size t * sizeof_oid, unsigned int * critical)

cert: should contain a gnutls x509 crt t structure

indx: This specifies which OID to return. Use zero to get the first one.

oid: a pointer to a buffer to hold the OID (may be null)

sizeof oid: initially holds the size of oid

This function will extract the key purpose OIDs of the Certificate specified by the
given index. These are stored in the Extended Key Usage extension (2.5.29.37) See
the GNUTLS KP * definitions for human readable names.

If oid is null then only the size will be filled.

Returns GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not long
enough, and in that case the sizeof oid will be updated with the required size. On
success 0 is returned.

[Function]int gnutls_x509_crt_get_key_usage (gnutls x509 crt t cert,
unsigned int * key_usage, unsigned int * critical)

cert: should contain a gnutls x509 crt t structure

key usage: where the key usage bits will be stored

critical: will be non zero if the extension is marked as critical

This function will return certificate’s key usage, by reading the keyUsage
X.509 extension (2.5.29.15). The key usage value will ORed values of the:
GNUTLS KEY DIGITAL SIGNATURE, GNUTLS KEY NON REPUDIATION,
GNUTLS KEY KEY ENCIPHERMENT, GNUTLS KEY DATA ENCIPHERMENT,
GNUTLS KEY KEY AGREEMENT, GNUTLS KEY KEY CERT SIGN,
GNUTLS KEY CRL SIGN, GNUTLS KEY ENCIPHER ONLY, GNUTLS KEY DECIPHER ONLY.

A negative value may be returned in case of parsing error. If the certificate does not
contain the keyUsage extension GNUTLS E REQUESTED DATA NOT AVAILABLE
will be returned.

[Function]int gnutls_x509_crt_get_pk_algorithm (gnutls x509 crt t cert,
unsigned int * bits)

cert: should contain a gnutls x509 crt t structure

bits: if bits is non null it will hold the size of the parameters’ in bits

This function will return the public key algorithm of an X.509 certificate.

Chapter 9: Function reference 126

If bits is non null, it should have enough size to hold the parameters size in bits. For
RSA the bits returned is the modulus. For DSA the bits returned are of the public
exponent.

Returns a member of the gnutls pk algorithm t enumeration on success, or a negative
value on error.

[Function]int gnutls_x509_crt_get_pk_dsa_raw (gnutls x509 crt t crt,
gnutls datum t * p, gnutls datum t * q, gnutls datum t * g, gnutls datum t *
y)

crt: Holds the certificate

p: will hold the p

q: will hold the q

g : will hold the g

y : will hold the y

This function will export the DSA private key’s parameters found in the given cer-
tificate. The new parameters will be allocated using gnutls_malloc() and will be
stored in the appropriate datum.

[Function]int gnutls_x509_crt_get_pk_rsa_raw (gnutls x509 crt t crt,
gnutls datum t * m, gnutls datum t * e)

crt: Holds the certificate

m: will hold the modulus

e: will hold the public exponent

This function will export the RSA private key’s parameters found in the given struc-
ture. The new parameters will be allocated using gnutls_malloc() and will be stored
in the appropriate datum.

[Function]int gnutls_x509_crt_get_serial (gnutls x509 crt t cert, void *
result, size t * result_size)

cert: should contain a gnutls x509 crt t structure

result: The place where the serial number will be copied

result size: Holds the size of the result field.

This function will return the X.509 certificate’s serial number. This is obtained by
the X509 Certificate serialNumber field. Serial is not always a 32 or 64bit number.
Some CAs use large serial numbers, thus it may be wise to handle it as something
opaque.

Returns 0 on success and a negative value in case of an error.

[Function]int gnutls_x509_crt_get_signature_algorithm (gnutls x509 crt t
cert)

cert: should contain a gnutls x509 crt t structure

This function will return a value of the gnutls sign algorithm t enumeration that is
the signature algorithm.

Returns a negative value on error.

Chapter 9: Function reference 127

[Function]int gnutls_x509_crt_get_subject_alt_name (gnutls x509 crt t
cert, unsigned int seq, void * ret, size t * ret_size, unsigned int *
critical)

cert: should contain a gnutls x509 crt t structure

seq: specifies the sequence number of the alt name (0 for the first one, 1 for the second
etc.)

ret: is the place where the alternative name will be copied to

ret size: holds the size of ret.

critical: will be non zero if the extension is marked as critical (may be null)

This function will return the alternative names, contained in the given certificate.

This is specified in X509v3 Certificate Extensions. GNUTLS will return the Alterna-
tive name (2.5.29.17), or a negative error code.

Returns GNUTLS E SHORT MEMORY BUFFER if ret size is not enough to hold
the alternative name, or the type of alternative name if everything was ok. The type
is one of the enumerated gnutls x509 subject alt name t.

If the certificate does not have an Alternative name with the specified sequence num-
ber then returns GNUTLS E REQUESTED DATA NOT AVAILABLE;

[Function]int gnutls_x509_crt_get_subject_key_id (gnutls x509 crt t cert,
void * ret, size t * ret_size, unsigned int * critical)

cert: should contain a gnutls x509 crt t structure

critical: will be non zero if the extension is marked as critical (may be null)

This function will return the X.509v3 certificate’s subject key identifier. This is
obtained by the X.509 Subject Key identifier extension field (2.5.29.14).

Returns 0 on success and a negative value in case of an error.

[Function]int gnutls_x509_crt_get_version (gnutls x509 crt t cert)
cert: should contain a gnutls x509 crt t structure

This function will return the version of the specified Certificate.

Returns a negative value on error.

[Function]int gnutls_x509_crt_import (gnutls x509 crt t cert, const
gnutls datum t * data, gnutls x509 crt fmt t format)

cert: The structure to store the parsed certificate.

data: The DER or PEM encoded certificate.

format: One of DER or PEM

This function will convert the given DER or PEM encoded Certificate to the native
gnutls x509 crt t format. The output will be stored in cert.

If the Certificate is PEM encoded it should have a header of "X509 CERTIFICATE",
or "CERTIFICATE".

Returns 0 on success.

Chapter 9: Function reference 128

[Function]int gnutls_x509_crt_init (gnutls x509 crt t * cert)
cert: The structure to be initialized
This function will initialize an X.509 certificate structure.
Returns 0 on success.

[Function]int gnutls_x509_crt_list_verify (const gnutls x509 crt t *
cert_list, int cert_list_length, const gnutls x509 crt t * CA_list, int
CA_list_length, const gnutls x509 crl t * CRL_list, int
CRL_list_length, unsigned int flags, unsigned int * verify)

cert list: is the certificate list to be verified
cert list length: holds the number of certificate in cert list
CA list: is the CA list which will be used in verification
CA list length: holds the number of CA certificate in CA list
CRL list: holds a list of CRLs.
CRL list length: the length of CRL list.
flags: Flags that may be used to change the verification algorithm. Use OR of the
gnutls certificate verify flags enumerations.
verify : will hold the certificate verification output.
This function will try to verify the given certificate list and return its status. Note
that expiration and activation dates are not checked by this function, you should
check them using the appropriate functions.
If no flags are specified (0), this function will use the basicConstraints (2.5.29.19)
PKIX extension. This means that only a certificate authority is allowed to sign a
certificate.
You must also check the peer’s name in order to check if the verified certificate belongs
to the actual peer.
The certificate verification output will be put in verify and will be one or more of
the gnutls certificate status t enumerated elements bitwise or’d. For a more detailed
verification status use gnutls_x509_crt_verify() per list element.
GNUTLS CERT INVALID\: the certificate chain is not valid.
GNUTLS CERT REVOKED\: a certificate in the chain has been revoked.
Returns 0 on success and a negative value in case of an error.

[Function]int gnutls_x509_crt_set_activation_time (gnutls x509 crt t
cert, time t act_time)

cert: should contain a gnutls x509 crt t structure
act time: The actual time
This function will set the time this Certificate was or will be activated.
Returns 0 on success, or a negative value in case of an error.

[Function]int gnutls_x509_crt_set_authority_key_id (gnutls x509 crt t
cert, const void * id, size t id_size)

cert: should contain a gnutls x509 crt t structure

Chapter 9: Function reference 129

id: The key ID
id size: Holds the size of the serial field.
This function will set the X.509 certificate’s authority key ID extension. Only the
keyIdentifier field can be set with this function.
Returns 0 on success, or a negative value in case of an error.

[Function]int gnutls_x509_crt_set_ca_status (gnutls x509 crt t crt,
unsigned int ca)

crt: should contain a gnutls x509 crt t structure
ca: true(1) or false(0). Depending on the Certificate authority status.
This function will set the basicConstraints certificate extension.
Returns 0 on success.

[Function]int gnutls_x509_crt_set_crl_dist_points (gnutls x509 crt t crt,
gnutls x509 subject alt name t type, const void * data_string, unsigned int
reason_flags)

crt: should contain a gnutls x509 crt t structure
type: is one of the gnutls x509 subject alt name t enumerations
data string : The data to be set
reason flags: revocation reasons
This function will set the CRL distribution points certificate extension.
Returns 0 on success.

[Function]int gnutls_x509_crt_set_crq (gnutls x509 crt t crt,
gnutls x509 crq t crq)

crt: should contain a gnutls x509 crt t structure
crq: holds a certificate request
This function will set the name and public parameters from the given certificate
request to the certificate. Only RSA keys are currently supported.
Returns 0 on success.

[Function]int gnutls_x509_crt_set_dn_by_oid (gnutls x509 crt t crt, const
char * oid, unsigned int raw_flag, const void * name, unsigned int
sizeof_name)

crt: should contain a gnutls x509 crt t structure
oid: holds an Object Identifier in a null terminated string
raw flag : must be 0, or 1 if the data are DER encoded
name: a pointer to the name
sizeof name: holds the size of name
This function will set the part of the name of the Certificate subject, specified by the
given OID. The input string should be ASCII or UTF-8 encoded.
Some helper macros with popular OIDs can be found in gnutls/x509.h With this
function you can only set the known OIDs. You can test for known OIDs using

Chapter 9: Function reference 130

gnutls_x509_dn_oid_known(). For OIDs that are not known (by gnutls) you should
properly DER encode your data, and call this function with raw flag set.
Returns 0 on success.

[Function]int gnutls_x509_crt_set_expiration_time (gnutls x509 crt t
cert, time t exp_time)

cert: should contain a gnutls x509 crt t structure
exp time: The actual time
This function will set the time this Certificate will expire.
Returns 0 on success, or a negative value in case of an error.

[Function]int gnutls_x509_crt_set_issuer_dn_by_oid (gnutls x509 crt t
crt, const char * oid, unsigned int raw_flag, const void * name, unsigned int
sizeof_name)

crt: should contain a gnutls x509 crt t structure
oid: holds an Object Identifier in a null terminated string
raw flag : must be 0, or 1 if the data are DER encoded
name: a pointer to the name
sizeof name: holds the size of name
This function will set the part of the name of the Certificate issuer, specified by the
given OID. The input string should be ASCII or UTF-8 encoded.
Some helper macros with popular OIDs can be found in gnutls/x509.h With this
function you can only set the known OIDs. You can test for known OIDs using
gnutls_x509_dn_oid_known(). For OIDs that are not known (by gnutls) you should
properly DER encode your data, and call this function with raw flag set.
Normally you do not need to call this function, since the signing operation will copy
the signer’s name as the issuer of the certificate.
Returns 0 on success.

[Function]int gnutls_x509_crt_set_key_purpose_oid (gnutls x509 crt t
cert, const void * oid, unsigned int critical)

cert: should contain a gnutls x509 crt t structure
oid: a pointer to a null terminated string that holds the OID
critical: Whether this extension will be critical or not
This function will set the key purpose OIDs of the Certificate. These are stored in
the Extended Key Usage extension (2.5.29.37) See the GNUTLS KP * definitions for
human readable names.
Subsequent calls to this function will append OIDs to the OID list.
On success 0 is returned.

[Function]int gnutls_x509_crt_set_key_usage (gnutls x509 crt t crt,
unsigned int usage)

crt: should contain a gnutls x509 crt t structure
usage: an ORed sequence of the GNUTLS KEY * elements.
This function will set the keyUsage certificate extension.
Returns 0 on success.

Chapter 9: Function reference 131

[Function]int gnutls_x509_crt_set_key (gnutls x509 crt t crt,
gnutls x509 privkey t key)

crt: should contain a gnutls x509 crt t structure

key : holds a private key

This function will set the public parameters from the given private key to the certifi-
cate. Only RSA keys are currently supported.

Returns 0 on success.

[Function]int gnutls_x509_crt_set_serial (gnutls x509 crt t cert, const void
* serial, size t serial_size)

cert: should contain a gnutls x509 crt t structure

serial: The serial number

serial size: Holds the size of the serial field.

This function will set the X.509 certificate’s serial number. Serial is not always a 32
or 64bit number. Some CAs use large serial numbers, thus it may be wise to handle
it as something opaque.

Returns 0 on success, or a negative value in case of an error.

[Function]int gnutls_x509_crt_set_subject_alternative_name
(gnutls x509 crt t crt, gnutls x509 subject alt name t type, const char *
data_string)

crt: should contain a gnutls x509 crt t structure

type: is one of the gnutls x509 subject alt name t enumerations

data string : The data to be set

This function will set the subject alternative name certificate extension.

Returns 0 on success.

[Function]int gnutls_x509_crt_set_subject_key_id (gnutls x509 crt t cert,
const void * id, size t id_size)

cert: should contain a gnutls x509 crt t structure

id: The key ID

id size: Holds the size of the serial field.

This function will set the X.509 certificate’s subject key ID extension.

Returns 0 on success, or a negative value in case of an error.

[Function]int gnutls_x509_crt_set_version (gnutls x509 crt t crt, unsigned
int version)

crt: should contain a gnutls x509 crt t structure

version: holds the version number. For X.509v1 certificates must be 1.

This function will set the version of the certificate. This must be one for X.509 version
1, and so on. Plain certificates without extensions must have version set to one.

Returns 0 on success.

Chapter 9: Function reference 132

[Function]int gnutls_x509_crt_sign (gnutls x509 crt t crt, gnutls x509 crt t
issuer, gnutls x509 privkey t issuer_key)

crt: should contain a gnutls x509 crt t structure
issuer: is the certificate of the certificate issuer
issuer key : holds the issuer’s private key
This function will sign the certificate with the issuer’s private key, and will copy the
issuer’s information into the certificate.
This must be the last step in a certificate generation since all the previously set
parameters are now signed.
Returns 0 on success.

[Function]int gnutls_x509_crt_to_xml (gnutls x509 crt t cert, gnutls datum t
* res, int detail)

cert: should contain a gnutls x509 crt t structure
res: The datum that will hold the result
detail: The detail level (must be GNUTLS XML SHOW ALL or
GNUTLS XML NORMAL)
This function will return the XML structures of the given X.509 certificate. The
XML structures are allocated internally (with malloc) and stored into res. Returns a
negative error code in case of an error.

[Function]int gnutls_x509_crt_verify_data (gnutls x509 crt t crt, unsigned
int flags, const gnutls datum t * data, const gnutls datum t * signature)

crt: Holds the certificate
flags: should be 0 for now
data: holds the data to be signed
signature: contains the signature
This function will verify the given signed data, using the parameters from the certifi-
cate.
In case of a verification failure 0 is returned, and 1 on success.

[Function]int gnutls_x509_crt_verify (gnutls x509 crt t cert, const
gnutls x509 crt t * CA_list, int CA_list_length, unsigned int flags,
unsigned int * verify)

cert: is the certificate to be verified
CA list: is one certificate that is considered to be trusted one
CA list length: holds the number of CA certificate in CA list
flags: Flags that may be used to change the verification algorithm. Use OR of the
gnutls certificate verify flags enumerations.
verify : will hold the certificate verification output.
This function will try to verify the given certificate and return its status. The verifi-
cation output in this functions cannot be GNUTLS CERT NOT VALID.
Returns 0 on success and a negative value in case of an error.

Chapter 9: Function reference 133

[Function]int gnutls_x509_dn_oid_known (const char * oid)
oid: holds an Object Identifier in a null terminated string
This function will inform about known DN OIDs. This is useful since functions like
gnutls_x509_crt_set_dn_by_oid() use the information on known OIDs to properly
encode their input. Object Identifiers that are not known are not encoded by these
functions, and their input is stored directly into the ASN.1 structure. In that case of
unknown OIDs, you have the responsibility of DER encoding your data.
Returns 1 on known OIDs and 0 otherwise.

[Function]int gnutls_x509_privkey_cpy (gnutls x509 privkey t dst,
gnutls x509 privkey t src)

dst: The destination key, which should be initialized.
src: The source key
This function will copy a private key from source to destination key.

[Function]void gnutls_x509_privkey_deinit (gnutls x509 privkey t key)
key : The structure to be initialized
This function will deinitialize a private key structure.

[Function]int gnutls_x509_privkey_export_dsa_raw (gnutls x509 privkey t
key, gnutls datum t * p, gnutls datum t * q, gnutls datum t * g,
gnutls datum t * y, gnutls datum t * x)

p: will hold the p
q: will hold the q
g : will hold the g
y : will hold the y
x: will hold the x
This function will export the DSA private key’s parameters found in the given struc-
ture. The new parameters will be allocated using gnutls_malloc() and will be stored
in the appropriate datum.

[Function]int gnutls_x509_privkey_export_pkcs8 (gnutls x509 privkey t key,
gnutls x509 crt fmt t format, const char * password, unsigned int flags,
void * output_data, size t * output_data_size)

key : Holds the key
format: the format of output params. One of PEM or DER.
password: the password that will be used to encrypt the key.
flags: an ORed sequence of gnutls pkcs encrypt flags t
output data: will contain a private key PEM or DER encoded
output data size: holds the size of output data (and will be replaced by the actual
size of parameters)
This function will export the private key to a PKCS8 structure. Currently only RSA
keys can be exported. If the flags do not specify the encryption cipher, then the
default 3DES (PBES2) will be used.

Chapter 9: Function reference 134

The password can be either ASCII or UTF-8 in the default PBES2 encryption
schemas, or ASCII for the PKCS12 schemas.
If the buffer provided is not long enough to hold the output, then
GNUTLS E SHORT MEMORY BUFFER will be returned.
If the structure is PEM encoded, it will have a header of "BEGIN ENCRYPTED
PRIVATE KEY" or "BEGIN PRIVATE KEY" if encryption is not used.
In case of failure a negative value will be returned, and 0 on success.

[Function]int gnutls_x509_privkey_export_rsa_raw (gnutls x509 privkey t
key, gnutls datum t * m, gnutls datum t * e, gnutls datum t * d,
gnutls datum t * p, gnutls datum t * q, gnutls datum t * u)

m: will hold the modulus
e: will hold the public exponent
d: will hold the private exponent
p: will hold the first prime (p)
q: will hold the second prime (q)
u: will hold the coefficient
This function will export the RSA private key’s parameters found in the given struc-
ture. The new parameters will be allocated using gnutls_malloc() and will be stored
in the appropriate datum.

[Function]int gnutls_x509_privkey_export (gnutls x509 privkey t key,
gnutls x509 crt fmt t format, void * output_data, size t *
output_data_size)

key : Holds the key
format: the format of output params. One of PEM or DER.
output data: will contain a private key PEM or DER encoded
output data size: holds the size of output data (and will be replaced by the actual
size of parameters)
This function will export the private key to a PKCS1 structure for RSA keys, or
an integer sequence for DSA keys. The DSA keys are in the same format with the
parameters used by openssl.
If the buffer provided is not long enough to hold the output, then
GNUTLS E SHORT MEMORY BUFFER will be returned.
If the structure is PEM encoded, it will have a header of "BEGIN RSA PRIVATE
KEY".
In case of failure a negative value will be returned, and 0 on success.

[Function]int gnutls_x509_privkey_generate (gnutls x509 privkey t key,
gnutls pk algorithm t algo, unsigned int bits, unsigned int flags)

key : should contain a gnutls x509 privkey t structure
algo: is one of RSA or DSA.
bits: the size of the modulus
flags: unused for now. Must be 0.

Chapter 9: Function reference 135

This function will generate a random private key. Note that this function must be
called on an empty private key.
Returns 0 on success or a negative value on error.

[Function]int gnutls_x509_privkey_get_key_id (gnutls x509 privkey t key,
unsigned int flags, unsigned char * output_data, size t *
output_data_size)

key : Holds the key
flags: should be 0 for now
output data: will contain the key ID
output data size: holds the size of output data (and will be replaced by the actual
size of parameters)
This function will return a unique ID the depends on the public key parameters. This
ID can be used in checking whether a certificate corresponds to the given key.
If the buffer provided is not long enough to hold the output, then
GNUTLS E SHORT MEMORY BUFFER will be returned. The output
will normally be a SHA-1 hash output, which is 20 bytes.
In case of failure a negative value will be returned, and 0 on success.

[Function]int gnutls_x509_privkey_get_pk_algorithm (gnutls x509 privkey t
key)

key : should contain a gnutls x509 privkey t structure
This function will return the public key algorithm of a private key.
Returns a member of the gnutls pk algorithm t enumeration on success, or a negative
value on error.

[Function]int gnutls_x509_privkey_import_dsa_raw (gnutls x509 privkey t
key, const gnutls datum t * p, const gnutls datum t * q, const gnutls datum t
* g, const gnutls datum t * y, const gnutls datum t * x)

key : The structure to store the parsed key
p: holds the p
q: holds the q
g : holds the g
y : holds the y
x: holds the x
This function will convert the given DSA raw parameters to the native
gnutls x509 privkey t format. The output will be stored in key.

[Function]int gnutls_x509_privkey_import_pkcs8 (gnutls x509 privkey t key,
const gnutls datum t * data, gnutls x509 crt fmt t format, const char *
password, unsigned int flags)

key : The structure to store the parsed key
data: The DER or PEM encoded key.
format: One of DER or PEM

Chapter 9: Function reference 136

password: the password to decrypt the key (if it is encrypted).

flags: use 0.

This function will convert the given DER or PEM encoded PKCS8 2.0 encrypted
key to the native gnutls x509 privkey t format. The output will be stored in key.
Currently only RSA keys can be imported, and flags can only be used to indicate an
unencrypted key.

The password can be either ASCII or UTF-8 in the default PBES2 encryption
schemas, or ASCII for the PKCS12 schemas.

If the Certificate is PEM encoded it should have a header of "ENCRYPTED PRI-
VATE KEY", or "PRIVATE KEY". You only need to specify the flags if the key is
DER encoded.

Returns 0 on success.

[Function]int gnutls_x509_privkey_import_rsa_raw (gnutls x509 privkey t
key, const gnutls datum t * m, const gnutls datum t * e, const gnutls datum t
* d, const gnutls datum t * p, const gnutls datum t * q, const gnutls datum t
* u)

key : The structure to store the parsed key

m: holds the modulus

e: holds the public exponent

d: holds the private exponent

p: holds the first prime (p)

q: holds the second prime (q)

u: holds the coefficient

This function will convert the given RSA raw parameters to the native
gnutls x509 privkey t format. The output will be stored in key.

[Function]int gnutls_x509_privkey_import (gnutls x509 privkey t key, const
gnutls datum t * data, gnutls x509 crt fmt t format)

key : The structure to store the parsed key

data: The DER or PEM encoded certificate.

format: One of DER or PEM

This function will convert the given DER or PEM encoded key to the native
gnutls x509 privkey t format. The output will be stored in key .

If the key is PEM encoded it should have a header of "RSA PRIVATE KEY", or
"DSA PRIVATE KEY".

Returns 0 on success.

[Function]int gnutls_x509_privkey_init (gnutls x509 privkey t * key)
key : The structure to be initialized

This function will initialize an private key structure.

Returns 0 on success.

Chapter 9: Function reference 137

[Function]int gnutls_x509_privkey_sign_data (gnutls x509 privkey t key,
gnutls digest algorithm t digest, unsigned int flags, const gnutls datum t *
data, void * signature, size t * signature_size)

key : Holds the key

digest: should be MD5 or SHA1

flags: should be 0 for now

data: holds the data to be signed

signature: will contain the signature

signature size: holds the size of signature (and will be replaced by the new size)

This function will sign the given data using a signature algorithm supported by the
private key. Signature algorithms are always used together with a hash functions.
Different hash functions may be used for the RSA algorithm, but only SHA-1 for the
DSA keys.

If the buffer provided is not long enough to hold the output, then
GNUTLS E SHORT MEMORY BUFFER will be returned.

In case of failure a negative value will be returned, and 0 on success.

[Function]int gnutls_x509_privkey_verify_data (gnutls x509 privkey t key,
unsigned int flags, const gnutls datum t * data, const gnutls datum t *
signature)

key : Holds the key

flags: should be 0 for now

data: holds the data to be signed

signature: contains the signature

This function will verify the given signed data, using the parameters in the private
key.

In case of a verification failure 0 is returned, and 1 on success.

[Function]int gnutls_x509_rdn_get_by_oid (const gnutls datum t * idn, const
char * oid, int indx, unsigned int raw_flag, void * buf, size t *
sizeof_buf)

idn: should contain a DER encoded RDN sequence

oid: an Object Identifier

indx: In case multiple same OIDs exist in the RDN indicates which to send. Use 0
for the first one.

raw flag : If non zero then the raw DER data are returned.

buf : a pointer to a structure to hold the peer’s name

sizeof buf : holds the size of buf

This function will return the name of the given Object identifier, of the RDN sequence.
The name will be encoded using the rules from RFC2253.

Returns GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not long
enough, and 0 on success.

Chapter 9: Function reference 138

[Function]int gnutls_x509_rdn_get_oid (const gnutls datum t * idn, int indx,
void * buf, size t * sizeof_buf)

idn: should contain a DER encoded RDN sequence
indx: Indicates which OID to return. Use 0 for the first one.
This function will return the specified Object identifier, of the RDN sequence.
Returns GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not long
enough, and 0 on success.

[Function]int gnutls_x509_rdn_get (const gnutls datum t * idn, char * buf,
size t * sizeof_buf)

idn: should contain a DER encoded RDN sequence
buf : a pointer to a structure to hold the peer’s name
sizeof buf : holds the size of buf
This function will return the name of the given RDN sequence. The name will be in
the form "C=xxxx,O=yyyy,CN=zzzz" as described in RFC2253.
Returns GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not long
enough, and 0 on success.

9.3 GnuTLS-extra functions

These functions are only available in the GPL version of the library called gnutls-extra.
The prototypes for this library lie in ‘gnutls/extra.h’.

[Function]int gnutls_global_init_extra (void)
This function initializes the global state of gnutls-extra library to defaults. Returns
zero on success.
Note that gnutls_global_init() has to be called before this function. If this func-
tion is not called then the gnutls-extra library will not be usable.

9.4 OpenPGP functions

The following functions are to be used for OpenPGP certificate handling. Their prototypes
lie in ‘gnutls/openpgp.h’.

[Function]int gnutls_openpgp_key_check_hostname (gnutls openpgp key t
key, const char * hostname)

key : should contain an gnutls openpgp key t structure
hostname: A null terminated string that contains a DNS name
This function will check if the given key’s owner matches the given hostname. This
is a basic implementation of the matching described in RFC2818 (HTTPS), which
takes into account wildcards.
Returns non zero on success, and zero on failure.

[Function]void gnutls_openpgp_key_deinit (gnutls openpgp key t key)
key : The structure to be initialized
This function will deinitialize a key structure.

Chapter 9: Function reference 139

[Function]int gnutls_openpgp_key_export (gnutls openpgp key t key,
gnutls openpgp key fmt t format, void * output_data, size t *
output_data_size)

key : Holds the key.
format: One of gnutls openpgp key fmt t elements.
output data: will contain the key base64 encoded or raw
output data size: holds the size of output data (and will be replaced by the actual
size of parameters)
This function will convert the given key to RAW or Base64 format.
If the buffer provided is not long enough to hold the output, then
GNUTLS E SHORT MEMORY BUFFER will be returned.
Returns 0 on success.

[Function]time_t gnutls_openpgp_key_get_creation_time
(gnutls openpgp key t key)

key : the structure that contains the OpenPGP public key.
Returns the timestamp when the OpenPGP key was created.

[Function]time_t gnutls_openpgp_key_get_expiration_time
(gnutls openpgp key t key)

key : the structure that contains the OpenPGP public key.
Returns the time when the OpenPGP key expires. A value of ’0’ means that the key
doesn’t expire at all.

[Function]int gnutls_openpgp_key_get_fingerprint (gnutls openpgp key t
key, void * fpr, size t * fprlen)

key : the raw data that contains the OpenPGP public key.
fpr: the buffer to save the fingerprint.
fprlen: the integer to save the length of the fingerprint.
Returns the fingerprint of the OpenPGP key. Depends on the algorithm, the finger-
print can be 16 or 20 bytes.

[Function]int gnutls_openpgp_key_get_id (gnutls openpgp key t key,
unsigned char keyid[8])

key : the structure that contains the OpenPGP public key.
Returns the 64-bit keyID of the OpenPGP key.

[Function]int gnutls_openpgp_key_get_key_usage (gnutls openpgp key t key,
unsigned int * key_usage)

key : should contain a gnutls openpgp key t structure
key usage: where the key usage bits will be stored
This function will return certificate’s key usage, by checking the key algorithm. The
key usage value will ORed values of the: GNUTLS KEY DIGITAL SIGNATURE,
GNUTLS KEY KEY ENCIPHERMENT.
A negative value may be returned in case of parsing error.

Chapter 9: Function reference 140

[Function]int gnutls_openpgp_key_get_name (gnutls openpgp key t key, int
idx, char * buf, size t * sizeof_buf)

key : the structure that contains the OpenPGP public key.
idx: the index of the ID to extract
buf : a pointer to a structure to hold the name
sizeof buf : holds the size of ’buf’
Extracts the userID from the parsed OpenPGP key.
Returns 0 on success, and GNUTLS E REQUESTED DATA NOT AVAILABLE if
the index of the ID does not exist.

[Function]int gnutls_openpgp_key_get_pk_algorithm (gnutls openpgp key t
key, unsigned int * bits)

key : is an OpenPGP key
bits: if bits is non null it will hold the size of the parameters’ in bits
This function will return the public key algorithm of an OpenPGP certificate.
If bits is non null, it should have enough size to hold the parameters size in bits. For
RSA the bits returned is the modulus. For DSA the bits returned are of the public
exponent.
Returns a member of the GNUTLS PKAlgorithm enumeration on success, or a neg-
ative value on error.

[Function]int gnutls_openpgp_key_get_version (gnutls openpgp key t key)
key : the structure that contains the OpenPGP public key.
Extract the version of the OpenPGP key.

[Function]int gnutls_openpgp_key_import (gnutls openpgp key t key, const
gnutls datum t * data, gnutls openpgp key fmt t format)

key : The structure to store the parsed key.
data: The RAW or BASE64 encoded key.
format: One of gnutls openpgp key fmt t elements.
This function will convert the given RAW or Base64 encoded key to the native
gnutls openpgp key t format. The output will be stored in ’key’.
Returns 0 on success.

[Function]int gnutls_openpgp_key_init (gnutls openpgp key t * key)
key : The structure to be initialized
This function will initialize an OpenPGP key structure.
Returns 0 on success.

[Function]int gnutls_openpgp_key_to_xml (gnutls openpgp key t key,
gnutls datum t * xmlkey, int ext)

xmlkey : he datum struct to store the XML result.
ext: extension mode (1/0), 1 means include key signatures and key data.
This function will return the all OpenPGP key information encapsulated as a XML
string.

Chapter 9: Function reference 141

[Function]int gnutls_openpgp_key_verify_ring (gnutls openpgp key t key,
gnutls openpgp keyring t keyring, unsigned int flags, unsigned int *
verify)

key : the structure that holds the key.
keyring : holds the keyring to check against
flags: unused (should be 0)
verify : will hold the certificate verification output.
Verify all signatures in the key, using the given set of keys (keyring).
The key verification output will be put in verify and will be one or more of the
gnutls certificate status t enumerated elements bitwise or’d.
GNUTLS CERT INVALID\: A signature on the key is invalid.
GNUTLS CERT REVOKED\: The key has been revoked.
NOTE: this function does not verify using any "web of trust". You may use GnuPG
for that purpose, or any other external PGP application.
Returns 0 on success.

[Function]int gnutls_openpgp_key_verify_self (gnutls openpgp key t key,
unsigned int flags, unsigned int * verify)

key : the structure that holds the key.
flags: unused (should be 0)
verify : will hold the key verification output.
Verifies the self signature in the key. The key verification output will be put in verify
and will be one or more of the gnutls certificate status t enumerated elements bitwise
or’d.
GNUTLS CERT INVALID\: The self signature on the key is invalid.
Returns 0 on success.

[Function]int gnutls_openpgp_key_verify_trustdb (gnutls openpgp key t
key, gnutls openpgp trustdb t trustdb, unsigned int flags, unsigned int *
verify)

key : the structure that holds the key.
trustdb: holds the trustdb to check against
flags: unused (should be 0)
verify : will hold the certificate verification output.
Checks if the key is revoked or disabled, in the trustdb. The verification output will be
put in verify and will be one or more of the gnutls certificate status t enumerated
elements bitwise or’d.
GNUTLS CERT INVALID\: A signature on the key is invalid.
GNUTLS CERT REVOKED\: The key has been revoked.
NOTE: this function does not verify using any "web of trust". You may use GnuPG
for that purpose, or any other external PGP application.
Returns 0 on success.

Chapter 9: Function reference 142

[Function]int gnutls_openpgp_keyring_check_id (gnutls openpgp keyring t
ring, const unsigned char keyid[8], unsigned int flags)

ring : holds the keyring to check against

flags: unused (should be 0)

Check if a given key ID exists in the keyring.

Returns 0 on success (if keyid exists) and a negative error code on failure.

[Function]void gnutls_openpgp_keyring_deinit (gnutls openpgp keyring t
keyring)

keyring : The structure to be initialized

This function will deinitialize a CRL structure.

[Function]int gnutls_openpgp_keyring_import (gnutls openpgp keyring t
keyring, const gnutls datum t * data, gnutls openpgp key fmt t format)

keyring : The structure to store the parsed key.

data: The RAW or BASE64 encoded keyring.

format: One of gnutls openpgp keyring fmt elements.

This function will convert the given RAW or Base64 encoded keyring to the native
gnutls openpgp keyring t format. The output will be stored in ’keyring’.

Returns 0 on success.

[Function]int gnutls_openpgp_keyring_init (gnutls openpgp keyring t *
keyring)

keyring : The structure to be initialized

This function will initialize an OpenPGP keyring structure.

Returns 0 on success.

[Function]void gnutls_openpgp_privkey_deinit (gnutls openpgp privkey t
key)

key : The structure to be initialized

This function will deinitialize a key structure.

[Function]int gnutls_openpgp_privkey_get_pk_algorithm
(gnutls openpgp privkey t key, unsigned int * bits)

key : is an OpenPGP key

bits: if bits is non null it will hold the size of the parameters’ in bits

This function will return the public key algorithm of an OpenPGP certificate.

If bits is non null, it should have enough size to hold the parameters size in bits. For
RSA the bits returned is the modulus. For DSA the bits returned are of the public
exponent.

Returns a member of the GNUTLS PKAlgorithm enumeration on success, or a neg-
ative value on error.

Chapter 9: Function reference 143

[Function]int gnutls_openpgp_privkey_import (gnutls openpgp privkey t key,
const gnutls datum t * data, gnutls openpgp key fmt t format, const char *
pass, unsigned int flags)

key : The structure to store the parsed key.
data: The RAW or BASE64 encoded key.
format: One of gnutls openpgp key fmt t elements.
pass: Unused for now
flags: should be zero
This function will convert the given RAW or Base64 encoded key to the native
gnutls openpgp privkey t format. The output will be stored in ’key’.
Returns 0 on success.

[Function]int gnutls_openpgp_privkey_init (gnutls openpgp privkey t * key)
key : The structure to be initialized
This function will initialize an OpenPGP key structure.
Returns 0 on success.

[Function]void gnutls_openpgp_trustdb_deinit (gnutls openpgp trustdb t
trustdb)

trustdb: The structure to be initialized
This function will deinitialize a CRL structure.

[Function]int gnutls_openpgp_trustdb_import_file
(gnutls openpgp trustdb t trustdb, const char * file)

trustdb: The structure to store the parsed key.
file: The file that holds the trustdb.
This function will convert the given RAW or Base64 encoded trustdb to the native
gnutls openpgp trustdb t format. The output will be stored in ’trustdb’.
Returns 0 on success.

[Function]int gnutls_openpgp_trustdb_init (gnutls openpgp trustdb t *
trustdb)

trustdb: The structure to be initialized
This function will initialize an OpenPGP trustdb structure.
Returns 0 on success.

Chapter 10: Certificate to XML convertion functions 144

10 Certificate to XML convertion functions

This appendix contains some example output of the XML convertion functions:
• gnutls_x509_crt_to_xml

• gnutls_openpgp_key_to_xml

10.1 An X.509 certificate
<?xml version="1.0" encoding="UTF-8"?>

<gnutls:x509:certificate version="1.1">

<certificate type="SEQUENCE">

<tbsCertificate type="SEQUENCE">

<version type="INTEGER" encoding="HEX">02</version>

<serialNumber type="INTEGER" encoding="HEX">01</serialNumber>

<signature type="SEQUENCE">

<algorithm type="OBJECT ID">1.2.840.113549.1.1.4</algorithm>

<parameters type="ANY">

<md5WithRSAEncryption encoding="HEX">0500</md5WithRSAEncryption>

</parameters>

</signature>

<issuer type="CHOICE">

<rdnSequence type="SEQUENCE OF">

<unnamed1 type="SET OF">

<unnamed1 type="SEQUENCE">

<type type="OBJECT ID">2.5.4.6</type>

<value type="ANY">

<X520countryName>GR</X520countryName>

</value>

</unnamed1>

</unnamed1>

<unnamed2 type="SET OF">

<unnamed1 type="SEQUENCE">

<type type="OBJECT ID">2.5.4.8</type>

<value type="ANY">

<X520StateOrProvinceName>Attiki</X520StateOrProvinceName>

</value>

</unnamed1>

</unnamed2>

<unnamed3 type="SET OF">

<unnamed1 type="SEQUENCE">

<type type="OBJECT ID">2.5.4.7</type>

<value type="ANY">

<X520LocalityName>Athina</X520LocalityName>

</value>

</unnamed1>

</unnamed3>

<unnamed4 type="SET OF">

<unnamed1 type="SEQUENCE">

<type type="OBJECT ID">2.5.4.10</type>

<value type="ANY">

<X520OrganizationName>GNUTLS</X520OrganizationName>

</value>

</unnamed1>

</unnamed4>

<unnamed5 type="SET OF">

<unnamed1 type="SEQUENCE">

Chapter 10: Certificate to XML convertion functions 145

<type type="OBJECT ID">2.5.4.11</type>

<value type="ANY">

<X520OrganizationalUnitName>GNUTLS dev.</X520OrganizationalUnitName>

</value>

</unnamed1>

</unnamed5>

<unnamed6 type="SET OF">

<unnamed1 type="SEQUENCE">

<type type="OBJECT ID">2.5.4.3</type>

<value type="ANY">

<X520CommonName>GNUTLS TEST CA</X520CommonName>

</value>

</unnamed1>

</unnamed6>

<unnamed7 type="SET OF">

<unnamed1 type="SEQUENCE">

<type type="OBJECT ID">1.2.840.113549.1.9.1</type>

<value type="ANY">

<Pkcs9email>gnutls-dev@gnupg.org</Pkcs9email>

</value>

</unnamed1>

</unnamed7>

</rdnSequence>

</issuer>

<validity type="SEQUENCE">

<notBefore type="CHOICE">

<utcTime type="TIME">010707101845Z</utcTime>

</notBefore>

<notAfter type="CHOICE">

<utcTime type="TIME">020707101845Z</utcTime>

</notAfter>

</validity>

<subject type="CHOICE">

<rdnSequence type="SEQUENCE OF">

<unnamed1 type="SET OF">

<unnamed1 type="SEQUENCE">

<type type="OBJECT ID">2.5.4.6</type>

<value type="ANY">

<X520countryName>GR</X520countryName>

</value>

</unnamed1>

</unnamed1>

<unnamed2 type="SET OF">

<unnamed1 type="SEQUENCE">

<type type="OBJECT ID">2.5.4.8</type>

<value type="ANY">

<X520StateOrProvinceName>Attiki</X520StateOrProvinceName>

</value>

</unnamed1>

</unnamed2>

<unnamed3 type="SET OF">

<unnamed1 type="SEQUENCE">

<type type="OBJECT ID">2.5.4.7</type>

<value type="ANY">

<X520LocalityName>Athina</X520LocalityName>

</value>

</unnamed1>

</unnamed3>

Chapter 10: Certificate to XML convertion functions 146

<unnamed4 type="SET OF">

<unnamed1 type="SEQUENCE">

<type type="OBJECT ID">2.5.4.10</type>

<value type="ANY">

<X520OrganizationName>GNUTLS</X520OrganizationName>

</value>

</unnamed1>

</unnamed4>

<unnamed5 type="SET OF">

<unnamed1 type="SEQUENCE">

<type type="OBJECT ID">2.5.4.11</type>

<value type="ANY">

<X520OrganizationalUnitName>GNUTLS dev.</X520OrganizationalUnitName>

</value>

</unnamed1>

</unnamed5>

<unnamed6 type="SET OF">

<unnamed1 type="SEQUENCE">

<type type="OBJECT ID">2.5.4.3</type>

<value type="ANY">

<X520CommonName>localhost</X520CommonName>

</value>

</unnamed1>

</unnamed6>

<unnamed7 type="SET OF">

<unnamed1 type="SEQUENCE">

<type type="OBJECT ID">1.2.840.113549.1.9.1</type>

<value type="ANY">

<Pkcs9email>root@localhost</Pkcs9email>

</value>

</unnamed1>

</unnamed7>

</rdnSequence>

</subject>

<subjectPublicKeyInfo type="SEQUENCE">

<algorithm type="SEQUENCE">

<algorithm type="OBJECT ID">1.2.840.113549.1.1.1</algorithm>

<parameters type="ANY">

<rsaEncryption encoding="HEX">0500</rsaEncryption>

</parameters>

</algorithm>

<subjectPublicKey type="BIT STRING" encoding="HEX" length="1120">30818902818100D00B49EBB226D951F5CC57072199DDF287683D2DA1A0EFCC96BFF73164777C78C3991E92EDA66584E7B97BAB4BE68D595D225557E01E7E57B5C35C04B491948C5C427AD588D8C6989764996D6D44E17B65CCFC86F3B4842DE559B730C1DE3AEF1CE1A328AFF8A357EBA911E1F7E8FC1598E21E4BF721748C587F50CF46157D950203010001</subjectPublicKey>

</subjectPublicKeyInfo>

<extensions type="SEQUENCE OF">

<unnamed1 type="SEQUENCE">

<extnID type="OBJECT ID">2.5.29.35</extnID>

<critical type="BOOLEAN">FALSE</critical>

<extnValue type="SEQUENCE">

<keyIdentifier type="OCTET STRING" encoding="HEX">EFEE94ABC8CA577F5313DB76DC1A950093BAF3C9</keyIdentifier>

</extnValue>

</unnamed1>

<unnamed2 type="SEQUENCE">

<extnID type="OBJECT ID">2.5.29.37</extnID>

<critical type="BOOLEAN">FALSE</critical>

<extnValue type="SEQUENCE OF">

<unnamed1 type="OBJECT ID">1.3.6.1.5.5.7.3.1</unnamed1>

<unnamed2 type="OBJECT ID">1.3.6.1.5.5.7.3.2</unnamed2>

<unnamed3 type="OBJECT ID">1.3.6.1.4.1.311.10.3.3</unnamed3>

Chapter 10: Certificate to XML convertion functions 147

<unnamed4 type="OBJECT ID">2.16.840.1.113730.4.1</unnamed4>

</extnValue>

</unnamed2>

<unnamed3 type="SEQUENCE">

<extnID type="OBJECT ID">2.5.29.19</extnID>

<critical type="BOOLEAN">TRUE</critical>

<extnValue type="SEQUENCE">

<cA type="BOOLEAN">FALSE</cA>

</extnValue>

</unnamed3>

</extensions>

</tbsCertificate>

<signatureAlgorithm type="SEQUENCE">

<algorithm type="OBJECT ID">1.2.840.113549.1.1.4</algorithm>

<parameters type="ANY">

<md5WithRSAEncryption encoding="HEX">0500</md5WithRSAEncryption>

</parameters>

</signatureAlgorithm>

<signature type="BIT STRING" encoding="HEX" length="1024">B73945273AF2A395EC54BF5DC669D953885A9D811A3B92909D24792D36A44EC27E1C463AF8738BEFD29B311CCE8C6D9661BEC30911DAABB39B8813382B32D2E259581EBCD26C495C083984763966FF35D1DEFE432891E610C85072578DA7423244A8F5997B41A1F44E61F4F22C94375775055A5E72F25D5E4557467A91BD4251</signature>

</certificate>

</gnutls:x509:certificate>

10.2 An OpenPGP key<?xml version="1.0"?>

<gnutls:openpgp:key version="1.0">

<OPENPGPKEY>

<MAINKEY>

<KEYID>BD572CDCCCC07C3</KEYID>

<FINGERPRINT>BE615E88D6CFF27225B8A2E7BD572CDCCCC07C35</FINGERPRINT>

<PKALGO>DSA</PKALGO>

<KEYLEN>1024</KEYLEN>

<CREATED>1011533164</CREATED>

<REVOKED>0</REVOKED>

<KEY ENCODING="HEX"/>

<DSA-P>0400E72E76B62EEFA9A3BD594093292418050C02D7029D6CA2066EFC34C86038627C643EB1A652A7AF1D37CF46FC505AC1E0C699B37895B4BCB3E53541FFDA4766D6168C2B8AAFD6AB22466D06D18034D5DAC698E6993BA5B350FF822E1CD8702A75114E8B73A6B09CB3B93CE44DBB516C9BB5F95BB666188602A0A1447236C0658F</DSA-P>

<DSA-Q>00A08F5B5E78D85F792CC2072F9474645726FB4D9373</DSA-Q>

<DSA-G>03FE3578D689D6606E9118E9F9A7042B963CF23F3D8F1377A273C0F0974DBF44B3CABCBE14DD64412555863E39A9C627662D77AC36662AE449792C3262D3F12E9832A7565309D67BA0AE4DF25F5EDA0937056AD5BE89F4069EBD7EC76CE432441DF5D52FFFD06D39E5F61E36947B698A77CB62AB81E4A4122BF9050671D9946C865E</DSA-G>

<DSA-Y>0400D061437A964DDE318818C2B24DE008E60096B60DB8A684B85A838D119FC930311889AD57A3B927F448F84EB253C623EDA73B42FF78BCE63A6A531D75A64CE8540513808E9F5B10CE075D3417B801164918B131D3544C8765A8ECB9971F61A09FC73D509806106B5977D211CB0E1D04D0ED96BCE89BAE8F73D800B052139CBF8D</DSA-Y>

</MAINKEY>

<USERID>

<NAME>OpenCDK test key (Only intended for test purposes!)</NAME>

<EMAIL>opencdk@foo-bar.org</EMAIL>

<PRIMARY>0</PRIMARY>

<REVOKED>0</REVOKED>

</USERID>

<SIGNATURE>

<VERSION>4</VERSION>

<SIGCLASS>19</SIGCLASS>

<EXPIRED>0</EXPIRED>

<PKALGO>DSA</PKALGO>

<MDALGO>SHA1</MDALGO>

<CREATED>1011533164</CREATED>

<KEYID>BD572CDCCCC07C3</KEYID>

</SIGNATURE>

<SUBKEY>

<KEYID>FCB0CF3A5261E06</KEYID>

Chapter 10: Certificate to XML convertion functions 148

<FINGERPRINT>297B48ACC09C0FF683CA1ED1FCB0CF3A5261E067</FINGERPRINT>

<PKALGO>ELG</PKALGO>

<KEYLEN>1024</KEYLEN>

<CREATED>1011533167</CREATED>

<REVOKED>0</REVOKED>

<KEY ENCODING="HEX"/>

<ELG-P>0400E20156526069D067D24F4D71E6D38658E08BE3BF246C1ADCE08DB69CD8D459C1ED335738410798755AFDB79F1797CF022E70C7960F12CA6896D27CFD24A11CD316DDE1FBCC1EA615C5C31FEC656E467078C875FC509B1ECB99C8B56C2D875C50E2018B5B0FA378606EB6425A2533830F55FD21D649015615D49A1D09E9510F5F</ELG-P>

<ELG-G>000305</ELG-G>

<ELG-Y>0400D0BDADE40432758675C87D0730C360981467BAE1BEB6CC105A3C1F366BFDBEA12E378456513238B8AD414E52A2A9661D1DF1DB6BB5F33F6906166107556C813224330B30932DB7C8CC8225672D7AE24AF2469750E539B661EA6475D2E03CD8D3838DC4A8AC4AFD213536FE3E96EC9D0AEA65164B576E01B37A8DCA89F2B257D0</ELG-Y>

</SUBKEY>

<SIGNATURE>

<VERSION>4</VERSION>

<SIGCLASS>24</SIGCLASS>

<EXPIRED>0</EXPIRED>

<PKALGO>DSA</PKALGO>

<MDALGO>SHA1</MDALGO>

<CREATED>1011533167</CREATED>

<KEYID>BD572CDCCCC07C3</KEYID>

</SIGNATURE>

</OPENPGPKEY>

</gnutls:openpgp:key>

Chapter 11: Error codes and descriptions 149

11 Error codes and descriptions

• GNUTLS_E_AGAIN: Function was interrupted.
• GNUTLS_E_ASN1_DER_ERROR: ASN1 parser: Error in DER parsing.
• GNUTLS_E_ASN1_DER_OVERFLOW: ASN1 parser: Overflow in DER parsing.
• GNUTLS_E_ASN1_ELEMENT_NOT_FOUND: ASN1 parser: Element was not found.
• GNUTLS_E_ASN1_GENERIC_ERROR: ASN1 parser: Generic parsing error.
• GNUTLS_E_ASN1_IDENTIFIER_NOT_FOUND: ASN1 parser: Identifier was not found
• GNUTLS_E_ASN1_SYNTAX_ERROR: ASN1 parser: Syntax error.
• GNUTLS_E_ASN1_TAG_ERROR: ASN1 parser: Error in TAG.
• GNUTLS_E_ASN1_TAG_IMPLICIT: ASN1 parser: error in implicit tag
• GNUTLS_E_ASN1_TYPE_ANY_ERROR: ASN1 parser: Error in type ’ANY’.
• GNUTLS_E_ASN1_VALUE_NOT_FOUND: ASN1 parser: Value was not found.
• GNUTLS_E_ASN1_VALUE_NOT_VALID: ASN1 parser: Value is not valid.
• GNUTLS_E_BASE64_DECODING_ERROR: Base64 decoding error.
• GNUTLS_E_BASE64_ENCODING_ERROR: Base64 encoding error.
• GNUTLS_E_CERTIFICATE_ERROR: Error in the certificate.
• GNUTLS_E_CERTIFICATE_KEY_MISMATCH: The certificate and the given key do not

match.
• GNUTLS_E_COMPRESSION_FAILED: Compression of the TLS record packet has failed.
• GNUTLS_E_CONSTRAINT_ERROR: Some constraint limits were reached.
• GNUTLS_E_DB_ERROR: Error in Database backend.
• GNUTLS_E_DECOMPRESSION_FAILED: Decompression of the TLS record packet has

failed.
• GNUTLS_E_DECRYPTION_FAILED: Decryption has failed.
• GNUTLS_E_DH_PRIME_UNACCEPTABLE: The Diffie Hellman prime sent by the server is

not acceptable (not long enough).
• GNUTLS_E_ENCRYPTION_FAILED: Encryption has failed.
• GNUTLS_E_ERROR_IN_FINISHED_PACKET: An error was encountered at the TLS Fin-

ished packet calculation.
• GNUTLS_E_EXPIRED: The requested session has expired.
• GNUTLS_E_FATAL_ALERT_RECEIVED: A TLS fatal alert has been received.
• GNUTLS_E_FILE_ERROR: Error while reading file.
• GNUTLS_E_GOT_APPLICATION_DATA: TLS Application data were received, while expect-

ing handshake data.
• GNUTLS_E_HASH_FAILED: Hashing has failed.
• GNUTLS_E_ILLEGAL_SRP_USERNAME: The SRP username supplied is illegal.
• GNUTLS_E_INCOMPATIBLE_GCRYPT_LIBRARY: The gcrypt library version is too old.
• GNUTLS_E_INCOMPATIBLE_LIBTASN1_LIBRARY: The tasn1 library version is too old.
• GNUTLS_E_INIT_LIBEXTRA: The initialization of GnuTLS-extra has failed.

Chapter 11: Error codes and descriptions 150

• GNUTLS_E_INSUFFICIENT_CREDENTIALS: Insufficient credentials for that request.
• GNUTLS_E_INTERNAL_ERROR: GnuTLS internal error.
• GNUTLS_E_INTERRUPTED: Function was interrupted.
• GNUTLS_E_INVALID_PASSWORD: The given password contains invalid characters.
• GNUTLS_E_INVALID_REQUEST: The request is invalid.
• GNUTLS_E_INVALID_SESSION: The specified session has been invalidated for some rea-

son.
• GNUTLS_E_KEY_USAGE_VIOLATION: Key usage violation in certificate has been detected.
• GNUTLS_E_LARGE_PACKET: A large TLS record packet was received.
• GNUTLS_E_LIBRARY_VERSION_MISMATCH: The GnuTLS library version does not match

the GnuTLS-extra library version.
• GNUTLS_E_LZO_INIT_FAILED: The initialization of LZO has failed.
• GNUTLS_E_MAC_VERIFY_FAILED: The Message Authentication Code verification failed.
• GNUTLS_E_MEMORY_ERROR: Internal error in memory allocation.
• GNUTLS_E_MPI_PRINT_FAILED: Could not export a large integer.
• GNUTLS_E_MPI_SCAN_FAILED: The scanning of a large integer has failed.
• GNUTLS_E_NO_CERTIFICATE_FOUND: The peer did not send any certificate.
• GNUTLS_E_NO_CIPHER_SUITES: No supported cipher suites have been found.
• GNUTLS_E_NO_COMPRESSION_ALGORITHMS: No supported compression algorithms have

been found.
• GNUTLS_E_NO_TEMPORARY_DH_PARAMS: No temporary DH parameters were found.
• GNUTLS_E_NO_TEMPORARY_RSA_PARAMS: No temporary RSA parameters were found.
• GNUTLS_E_OPENPGP_FINGERPRINT_UNSUPPORTED: The OpenPGP fingerprint is not sup-

ported.
• GNUTLS_E_OPENPGP_GETKEY_FAILED: Could not get OpenPGP key.
• GNUTLS_E_OPENPGP_KEYRING_ERROR: Error loading the keyring.
• GNUTLS_E_OPENPGP_TRUSTDB_VERSION_UNSUPPORTED: The specified GnuPG TrustDB

version is not supported. TrustDB v4 is supported.
• GNUTLS_E_PKCS1_WRONG_PAD: Wrong padding in PKCS1 packet.
• GNUTLS_E_PK_DECRYPTION_FAILED: Public key decryption has failed.
• GNUTLS_E_PK_ENCRYPTION_FAILED: Public key encryption has failed.
• GNUTLS_E_PK_SIGN_FAILED: Public key signing has failed.
• GNUTLS_E_PK_SIG_VERIFY_FAILED: Public key signature verification has failed.
• GNUTLS_E_PULL_ERROR: Error in the pull function.
• GNUTLS_E_PUSH_ERROR: Error in the push function.
• GNUTLS_E_RECEIVED_ILLEGAL_EXTENSION: An illegal TLS extension was received.
• GNUTLS_E_RECEIVED_ILLEGAL_PARAMETER: An illegal parameter has been received.
• GNUTLS_E_RECORD_LIMIT_REACHED: The upper limit of record packet sequence numbers

has been reached. Wow!
• GNUTLS_E_REHANDSHAKE: Rehandshake was requested by the peer.

Chapter 11: Error codes and descriptions 151

• GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE: The requested data were not available.
• GNUTLS_E_SHORT_MEMORY_BUFFER: The given memory buffer is too short to hold pa-

rameters.
• GNUTLS_E_SRP_PWD_ERROR: Error in SRP password file.
• GNUTLS_E_SRP_PWD_PARSING_ERROR: Parsing error in SRP password file.
• GNUTLS_E_SUCCESS: Success.
• GNUTLS_E_TOO_MANY_EMPTY_PACKETS: Too many empty record packets have been re-

ceived.
• GNUTLS_E_UNEXPECTED_HANDSHAKE_PACKET: An unexpected TLS handshake packet

was received.
• GNUTLS_E_UNEXPECTED_PACKET: An unexpected TLS packet was received.
• GNUTLS_E_UNEXPECTED_PACKET_LENGTH: A TLS packet with unexpected length was

received.
• GNUTLS_E_UNKNOWN_CIPHER_SUITE: Could not negotiate a supported cipher suite.
• GNUTLS_E_UNKNOWN_CIPHER_TYPE: The cipher type is unsupported.
• GNUTLS_E_UNKNOWN_COMPRESSION_ALGORITHM: Could not negotiate a supported com-

pression method.
• GNUTLS_E_UNKNOWN_HASH_ALGORITHM: The hash algorithm is unknown.
• GNUTLS_E_UNKNOWN_PKCS_BAG_TYPE: The PKCS structure’s bag type is unknown.
• GNUTLS_E_UNKNOWN_PKCS_CONTENT_TYPE: The PKCS structure’s content type is un-

known.
• GNUTLS_E_UNKNOWN_PK_ALGORITHM: An unknown public key algorithm was encoun-

tered.
• GNUTLS_E_UNSUPPORTED_CERTIFICATE_TYPE: The certificate type is not supported.
• GNUTLS_E_UNSUPPORTED_VERSION_PACKET: A record packet with illegal version was

received.
• GNUTLS_E_UNWANTED_ALGORITHM: An algorithm that is not enabled was negotiated.
• GNUTLS_E_WARNING_ALERT_RECEIVED: A TLS warning alert has been received.
• GNUTLS_E_X509_UNKNOWN_SAN: Unknown Subject Alternative name in X.509 certifi-

cate.
• GNUTLS_E_X509_UNSUPPORTED_ATTRIBUTE: The certificate has unsupported attributes.
• GNUTLS_E_X509_UNSUPPORTED_CRITICAL_EXTENSION: Unsupported critical extension

in X.509 certificate.
• GNUTLS_E_X509_UNSUPPORTED_OID: The OID is not supported.

Chapter 12: All the supported ciphersuites in GnuTLS 152

12 All the supported ciphersuites in GnuTLS

• TLS_RSA_NULL_MD5 (0x00 0x01): RFC 2246
• TLS_ANON_DH_3DES_EDE_CBC_SHA (0x00 0x1B): RFC 2246
• TLS_ANON_DH_ARCFOUR_MD5 (0x00 0x18): RFC 2246
• TLS_ANON_DH_AES_128_CBC_SHA (0x00 0x34): RFC 2246
• TLS_ANON_DH_AES_256_CBC_SHA (0x00 0x3A): RFC 2246
• TLS_RSA_ARCFOUR_SHA (0x00 0x05): RFC 2246
• TLS_RSA_ARCFOUR_MD5 (0x00 0x04): RFC 2246
• TLS_RSA_3DES_EDE_CBC_SHA (0x00 0x0A): RFC 2246
• TLS_RSA_EXPORT_ARCFOUR_40_MD5 (0x00 0x03): RFC 2246
• TLS_DHE_DSS_3DES_EDE_CBC_SHA (0x00 0x13): RFC 2246
• TLS_DHE_RSA_3DES_EDE_CBC_SHA (0x00 0x16): RFC 2246
• TLS_RSA_AES_128_CBC_SHA (0x00 0x2F): RFC 3268
• TLS_RSA_AES_128_CBC_SHA (0x00 0x35): RFC 3268
• TLS_DHE_DSS_AES_256_CBC_SHA (0x00 0x38): RFC 3268
• TLS_DHE_DSS_AES_128_CBC_SHA (0x00 0x32): RFC 3268
• TLS_DHE_RSA_AES_256_CBC_SHA (0x00 0x39): RFC 3268
• TLS_DHE_RSA_AES_128_CBC_SHA (0x00 0x33): RFC 3268
• TLS_SRP_SHA_3DES_EDE_CBC_SHA (0x00 0x50): draft-ietf-tls-srp
• TLS_SRP_SHA_AES_128_CBC_SHA (0x00 0x53): draft-ietf-tls-srp
• TLS_SRP_SHA_AES_256_CBC_SHA (0x00 0x56): draft-ietf-tls-srp
• TLS_SRP_SHA_RSA_3DES_EDE_CBC_SHA (0x00 0x51): draft-ietf-tls-srp
• TLS_SRP_SHA_DSS_3DES_EDE_CBC_SHA (0x00 0x52): draft-ietf-tls-srp
• TLS_SRP_SHA_RSA_AES_128_CBC_SHA (0x00 0x54): draft-ietf-tls-srp
• TLS_SRP_SHA_DSS_AES_128_CBC_SHA (0x00 0x55): draft-ietf-tls-srp
• TLS_SRP_SHA_RSA_AES_256_CBC_SHA (0x00 0x57): draft-ietf-tls-srp
• TLS_SRP_SHA_DSS_AES_256_CBC_SHA (0x00 0x58): draft-ietf-tls-srp
• TLS_DHE_DSS_3DES_EDE_CBC_RMD (0x00 0x72): draft-ietf-tls-openpgp-keys
• TLS_DHE_RSA_3DES_EDE_CBC_RMD (0x00 0x77): draft-ietf-tls-openpgp-keys
• TLS_DHE_DSS_AES_256_CBC_RMD (0x00 0x73): draft-ietf-tls-openpgp-keys
• TLS_DHE_DSS_AES_128_CBC_RMD (0x00 0x74): draft-ietf-tls-openpgp-keys
• TLS_DHE_RSA_AES_128_CBC_RMD (0x00 0x78): draft-ietf-tls-openpgp-keys
• TLS_DHE_RSA_AES_256_CBC_RMD (0x00 0x79): draft-ietf-tls-openpgp-keys
• TLS_RSA_3DES_EDE_CBC_RMD (0x00 0x7C): draft-ietf-tls-openpgp-keys
• TLS_RSA_AES_128_CBC_RMD (0x00 0x7D): draft-ietf-tls-openpgp-keys
• TLS_RSA_AES_256_CBC_RMD (0x00 0x7E): draft-ietf-tls-openpgp-keys
• TLS_DHE_DSS_ARCFOUR_SHA (0x00 0x66): draft-ietf-tls-56-bit-ciphersuites

Appendix A: Copying This Manual 153

Appendix A Copying This Manual

A.1 GNU Free Documentation License
Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

Appendix A: Copying This Manual 154

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix A: Copying This Manual 155

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.
If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any,

Appendix A: Copying This Manual 156

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix A: Copying This Manual 157

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix A: Copying This Manual 158

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix A: Copying This Manual 159

A.1.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Appendix A: Index 160

Index

A
Alert protocol . 8
Anonymous authentication 12

C
Callback functions . 4
Certificate authentication. 16
Certificate requests . 18
Certificate to XML convertion 144
certtool . 72
Ciphersuites . 152
Client Certificate authentication 9
Compression algorithms . 7

E
Error codes . 149
Example programs . 23

F
FDL, GNU Free Documentation License 153
Function reference . 76

G
gnutls-cli-debug . 71
GnuTLS-extra functions . 138

H
Handshake protocol . 8

M
Maximum fragment length 10

O
OpenPGP functions . 138
OpenPGP Keys . 11, 18
OpenPGP Server . 56
OpenSSL. 70

P
PKCS #10 . 18
PKCS #12 . 18

R
Record protocol . 6
Resuming sessions . 9

S
Server name indication . 10
SRP authentication . 13
srptool . 71
Symmetric encryption algorithms 6

T
TLS Extensions . 10
TLS Layers. 5
Transport protocol . 6

V
Verifying certificate paths . 17

X
X.509 certificates . 11, 16
X.509 Functions . 105

	Preface
	Introduction
	Availability

	The Library
	General Idea
	Error handling
	Memory handling
	Callback functions

	Introduction to TLS
	TLS layers
	The transport layer
	The TLS record protocol
	Encryption algorithms used in the record layer
	Compression algorithms used in the record layer
	Weaknesses and countermeasures

	The TLS alert protocol
	The TLS handshake protocol
	TLS cipher suites
	Client authentication
	Resuming Sessions
	Resuming internals

	TLS Extensions
	Maximum fragment length negotiation
	Server name indication

	Authentication methods
	Certificate authentication
	Authentication using X.509 certificates
	Authentication using OpenPGPkeys
	Using certificate authentication

	Anonymous authentication
	Authentication using SRP
	Authentication and credentials
	Parameters stored in credentials

	More on certificate authentication
	The X.509 trust model
	X.509 certificates
	Verifying X.509 certificate paths
	PKCS #10 certificate requests
	PKCS #12 structures

	The OpenPGP trust model
	OpenPGP keys
	Verifying an OpenPGP key

	How to use TLS in application protocols
	Introduction
	Separate ports
	Upward negotiation

	How to use GnuTLS in applications
	Preparation
	Headers
	Version check
	Building the source

	Multi-threaded applications
	Client examples
	Simple client example with X.509 certificate support
	Obtaining session information
	Verifying peer's certificate
	Using a callback to select the certificate to use
	Client with Resume capability example
	Simple client example with SRP authentication

	Server examples
	Echo Server with X.509 authentication
	Echo Server with X.509 authentication II
	Echo Server with OpenPGPauthentication
	Echo Server with SRP authentication

	Miscellaneous examples
	Checking for an alert
	X.509 certificate parsing example
	Certificate request generation
	PKCS #12 structure generation

	Compatibility with the OpenSSL library

	Included programs
	Invoking srptool
	Invoking gnutls-cli-debug
	Invoking certtool

	Function reference
	Core functions
	X.509 certificate functions
	GnuTLS-extra functions
	OpenPGP functions

	Certificate to XML convertion functions
	An X.509 certificate
	An OpenPGP key

	Error codes and descriptions
	All the supported ciphersuites in GnuTLS
	Copying This Manual
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Index

